The modern ribosome catalyzes all coded protein synthesis in extant organisms. It is likely that its core structure is a direct descendant from the ribosome present in the last common ancestor (LCA). Hence, its earliest origins likely predate the LCA and therefore date further back in time. Of special interest is the pseudosymmetrical region (SymR) that lies deep within the large subunit (LSU) where the peptidyl transfer reaction takes place. It was previously proposed that two RNA oligomers, representing the P- and A-regions of extant ribosomes dimerized to create a pore-like structure, which hosted the necessary properties that facilitate peptide bond formation. However, recent experimental studies show that this may not be the case. Instead, several RNA constructs derived exclusively from the P-region were shown to form a homodimer capable of peptide bond synthesis. Of special interest will be the origin issues because the homodimer would have allowed a pre-LCA ribosome that was significantly smaller than previously proposed. For the A-region, the immediate issue will likely be its origin and whether it enhances ribosome performance. Here, we reanalyze the RNA/RNA interaction regions that most likely lead to SymR formation in light of these recent findings. Further, it has been suggested that the ability of these RNA constructs to dimerize and enhance peptide bond formation is sequence-dependent. We have analyzed the implications of sequence variations as parts of functional and nonfunctional constructs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945445PMC
http://dx.doi.org/10.1261/rna.079417.122DOI Listing

Publication Analysis

Top Keywords

peptide bond
12
special interest
8
bond formation
8
rna constructs
8
will origin
8
build protoribosome
4
protoribosome structural
4
structural insights
4
insights protoribosome
4
constructs
4

Similar Publications

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LA-Orn-βAcc-PEA, ; LA-Lys-βAcc-PEA, ; and LA-Arg-βAcc-PEA, in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both and methicillin-resistant (MRSA) and their multidrug resistant (MDR) clinical isolates.

View Article and Find Full Text PDF

In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, N/N, O/O, and C/C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> N/N > O/O > C/C.

View Article and Find Full Text PDF

Performance analysis of Leica Biosystems p16 monoclonal antibody in oropharyngeal squamous cell carcinoma.

Diagn Pathol

January 2025

Medical and Scientific Affairs, Leica Biosystems Richmond Inc. 5205 US, Highway 12, Richmond, IL, 60071, US.

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer death globally, with newly diagnosed oropharyngeal squamous cell carcinoma (OPSCC) cases rising to 54,000 in the US alone in the year 2022. Recently, human papilloma virus (HPV) infection was more prevalent in OPSCC patients than the traditionally known carcinogens such as tobacco or alcohol. HPV 16 is the most common causative HPV strain, which is found in 5-10% of HNSCC patients.

View Article and Find Full Text PDF

Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!