Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films.

Carbohydr Polym

Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain. Electronic address:

Published: February 2023

In this work, chemical modification of chitosan using cationic thiazolium groups was investigated with the aim to improve water solubility and antimicrobial properties of chitosan. Enzymatic synthesis and ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry were employed to synthesize and attach to chitosan through the amine groups the molecule bearing thiazolium moieties, quaternized 4-(2-(4-methylthiazol-5-yl) ethoxy)-4-oxobutanoic acid (MTBAQ). On the basis of Fourier transform infrared spectroscopy (FTIR), elemental analysis and solid state nuclear magnetic resonance (ssNMR), around 95 % of the available amine groups of chitosan (of 25 % degree of acetylation) reacted. The resulting derivative was water soluble at physiological pH and exhibit excellent antimicrobial activity against Listeria innocua, Staphylococcus epidermidis, Staphylococcus aureus and Methicillin Resistant S. aureus Gram-positive bacteria (MIC = 8-32 μg/ mL), whereas its efficiency decreases against fungi Candida albicans and Eschericia coli Gram-negative bacterium. Subsequently, the thiazolium chitosan derivative was employed as antimicrobial component (up to 7 wt%) of chitosan/glycerol based films. The incorporation of the chitosan derivative does not modify significantly the characteristics of the film in terms of thermal and mechanical properties, while enhances considerably the antimicrobial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.120438DOI Listing

Publication Analysis

Top Keywords

chitosan derivative
12
chitosan
8
thiazolium chitosan
8
antimicrobial properties
8
based films
8
amine groups
8
antimicrobial activity
8
antimicrobial
5
synthesis characterization
4
thiazolium
4

Similar Publications

Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate.

View Article and Find Full Text PDF

Biopolymer based electrolytes can overcome current performance limitations of lithium-ion batteries (LIBs). Biopolymers enable electrolytes with high ionic conductivities and wide electrochemical stability windows. While the biobased character of natural materials is claimed as an inherent advantage in meeting current environmental sustainability challenges, further research is required to quantify and compare their environmental impacts as electrolytes.

View Article and Find Full Text PDF

Chitosan-based injectable porous microcarriers with enhanced adipogenic differentiation and angiogenesis for subcutaneous adipose tissue regeneration.

Biomater Adv

January 2025

Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China. Electronic address:

Chitosan is a promising biomaterial for tissue engineering, but its functionality is limited by a lack of bioactive sites. This study develops chitosan/amniotic membrane microcarriers to enhance vascularization and tissue regeneration for subcutaneous adipose tissue. The incorporation of decellularized amniotic membrane enhances the bioactivities of chitosan in promoting cell differentiation and angiogenesis.

View Article and Find Full Text PDF

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!