Total flavonoids of Litchi seed attenuate stem cell-like properties in breast cancer by regulating Notch3 signaling pathway.

J Ethnopharmacol

Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China. Electronic address:

Published: April 2023

AI Article Synopsis

  • Breast cancer is the most commonly diagnosed cancer globally, often complicated by the presence of breast cancer stem cells (BCSCs), which hinder treatment success.
  • Litchi seeds exhibit promising anti-cancer properties, and this study explores how total flavonoids from litchi seeds (TFLS) impact BCSCs both in laboratory settings and in mouse models.
  • Findings reveal that TFLS significantly reduces the viability and tumor-initiating potential of BCSCs by targeting specific stem cell markers and inhibiting the Notch3 signaling pathway, suggesting a potential therapeutic role for litchi seed extracts in breast cancer treatment.

Article Abstract

Ethnopharmacological Relevance: Breast cancer has been the most commonly-diagnosed cancer worldwide, and the treatment and prognosis of which are often limited by breast cancer stem cells (BCSCs). Litchi seeds have shown good anti-cancer activity in various cancers including prostate cancer, lung cancer and breast cancer. However, the activity and underlying mechanism of Litchi seeds against BCSCs remain unknown.

Aim Of The Study: To investigate the activity and mechanism of total flavonoids of litchi seed (TFLS) against BCSCs in vitro and in vivo.

Materials And Methods: Two orthotopic xenograft mouse models were established using HCC1806 cells pretreated or untreated with TFLS to determine whether TFLS could target BCSCs in vivo. Mammosphere formation and flow cytometry assays were employed to evaluate the effect of TFLS on BCSCs in vitro. The underlying mechanism was investigated using RT-qPCR, Western blot, immunohistochemistry and immunofluorescence experiments.

Results: TFLS could significantly inhibit the viability of HCC1806, MCF-7 and HCC1937 cells in vitro and suppress the growth of HCC1806 cells in vivo. TFLS attenuated stem cell-like properties of breast cancer through reducing the percentage of CD44CD24 cells, inhibiting the mammospheres formation and down-regulating the mRNA and protein levels of cancer stem cells related markers (Oct4, Nanog, Sox2) in MCF-7 and HCC1806 cells. Meanwhile, TFLS suppressed the tumor-initiating ability of BCSCs via reducing the percentage of CD44CD24 cells in tumor and lowering tumor incidence rate in orthotopic xenograft mice. In addition, TFLS treatments restricted the expression and nuclear translocation of Notch3, subsequently down-regulated Hes1 and Runx2 expressions.

Conclusions: TFLS could suppress the growth of breast cancer and eliminate breast cancer stem cells by inhibiting the Notch3 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2023.116133DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
cancer stem
12
stem cells
12
cancer
11
tfls
9
total flavonoids
8
flavonoids litchi
8
litchi seed
8
stem cell-like
8
cell-like properties
8

Similar Publications

Background: One-stage direct-to-implant (DTI) breast reconstruction is increasingly popular with the use of prepectoral reconstruction leading to increased demand for structural scaffolds. It is vital to determine if differences in safety profiles exist among scaffolds.

Methods: We performed a retrospective cohort study of consecutive patients in our breast cancer center undergoing DTI reconstruction.

View Article and Find Full Text PDF

Boosting Natural Killer Cells' Immunotherapy with Amoxicillin-Loaded Liposomes.

Mol Pharm

January 2025

State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Natural killer (NK) cell immunotherapy is a significant category in tumor therapy due to its potent tumor-killing and immunomodulatory effects. This research delves into exploring the mechanisms underlying the ability of amoxicillin to boost NK cell cytotoxicity in NK cell immunotherapy. Amoxicillin significantly enhances the cytotoxic activity of NK-92MI cells against MCF-7 cells by triggering the initiation of a cytolytic program in target cell-deficient NK-92MI cells and augmenting the degranulation level of NK-92MI cells in the presence of target cells.

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

Learning Objectives: After studying this article, the participant should be able to: (1) Understand the unique differences between mastopexy in aesthetic and reconstructive breast surgery. (2) Describe the approach to performing mastopexy with autoaugmentation or after explantation. (3) Have insight into the approach and decision-making process for performing mastopexy with nipple-sparing mastectomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!