Objective: Diffusion Weighted Imaging (DWI) can be used to differentiate benign and malignant pulmonary nodules or masses, while T2WI is also of great value in the differential diagnosis of them. For example, T2WI can be used to differentiate abscess from lung cancer. The study aims to quantitatively evaluate the efficacy of free-breathing BLADE fat-suppressed T2 weighted turbo spin echo sequence (BLADE T2WI) for differentiating lung cancer (LC) and benign pulmonary nodule or mass (BPNM).

Methods: A total of 291 patients with LC (197 males, 94 females; mean age 63.2 years) and 74 BPNM patients (53 males, 21 females; mean age 62.8 years) who underwent BLADE T2WI at 3-T MRI between November 2016 and May 2022were included in this retrospective study. Two radiologists independently blinded observed the MR images and measured the T2 contrast ratio (T2CR). Mann-Whitney U test was used to compare T2CR values between the two groups, ROC curves were used to evaluate the diagnostic efficacy of BLADE T2WI.

Results: The two radiologists had good inter-observer consistency for T2CR (ICC = 0.958). The T2CR of BPNM was significantly higher than LC (all p < 0.001); the cut-off value of T2CR was 2.135, and the sensitivity, specificity, and accuracy of diagnosis were 75.6%, 63.5%, and 73.2%, respectively. Moreover, T2CR correctly diagnosed 220 LC cases (220/291 = 75.6%) and 47 BPNM cases (47/74 = 63.5%).

Conclusion: The T2CR value of MR non-enhanced BLADE T2WI can be easily obtained and can quantitatively distinguish BPNM from LC, thus avoiding misdiagnosis caused by lack of work experience.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2022.12.025DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
free-breathing blade
8
blade fat-suppressed
8
fat-suppressed weighted
8
weighted turbo
8
turbo spin
8
spin echo
8
echo sequence
8
cancer benign
8
benign pulmonary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!