Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control.

Int J Biol Macromol

National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China. Electronic address:

Published: March 2023

As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.123123DOI Listing

Publication Analysis

Top Keywords

pest management
12
white-backed planthopper
8
large-scale dsrna
8
wbph
6
pest
5
functional characterization
4
characterization tyrosine
4
tyrosine melanin
4
melanin genes
4
genes white-backed
4

Similar Publications

Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.

View Article and Find Full Text PDF

Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.

View Article and Find Full Text PDF

Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.

View Article and Find Full Text PDF

Nlnemo suppresses of BMP signaling in wing development of the brown planthopper, Nilaparvata lugens.

Int J Biol Macromol

January 2025

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Nemo-like kinases (NLKs) integrate multiple signaling pathways and exhibit functional diversity in developmental processes, including the bone morphogenetic protein (BMP) pathway. However, their roles in insect wing development, particularly in hemimetabolous insects like the brown planthopper (Nilaparvata lugens), remain poorly understood. Here, we investigated the role of Nlnemo (Nlnmo), an NLK, in the wing development of N.

View Article and Find Full Text PDF

Because the use of synthetic agrochemicals is generally not allowed in organic crop production systems, growers rely on natural substances and processes, such as microbial control, to suppress insect pests. Reduced tillage practices are associated with beneficial soil organisms, such as entomopathogenic fungi, that can contribute to the natural control of insect pests. The impacts of management, such as tillage, in a cropping system can affect soil biota in the current season and can also persist over time as legacy effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!