Biogeochemical controls on climatically active gases and atmospheric sulfate aerosols in the western Pacific.

Environ Res

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China. Electronic address:

Published: March 2023

The Pacific Ocean plays an important role in regulating the budget of climatically active gases and the burden of sulfate aerosols. Here, a field investigation was conducted to clarify the key processes and factors controlling climatically active gases, including dimethyl sulfide (DMS), carbonyl sulfide (OCS), carbon disulfide (CS), and carbon dioxide (CO), in both surface seawater and the lower atmosphere of the western Pacific. In addition, the relative contributions of different sources to atmospheric sulfate aerosols were quantitatively estimated, and their causes were explored. The maximum concentrations of DMS, OCS and CS and the minimum partial pressure of CO (pCO) were observed in the Kuroshio-Oyashio Extension. Kuroshio-induced mesoscale eddies brought abundant nutrients and organic matter from the subsurface layer of Oyashio into the euphotic layer, thus enhancing primary productivity and accelerating the photoreaction of organic matter. These processes led to higher concentrations of DMS, OCS and CS and lower pCO. However, the oligotrophic subsurface layer in the subtropical gyre and the strong barrier layer in the equatorial waters suppressed the upward fluxes of nutrients and organic matter, resulting in lower surface concentrations of DMS, OCS, and CS in these areas. Being far from the continents, atmospheric concentrations of DMS, OCS and CS and pCO in the western Pacific generally were observed to depend on the local sea-to-air exchange and may be regulated by atmospheric oxidation and mixing of air masses. In general, oceanic DMS emissions played an important role in the formation of sulfate aerosols in the western Pacific (accounting for ∼19.5% of total sulfate aerosols), especially in the Kuroshio-Oyashio Extension (∼32.3%). These processes in seawater may also determine the variations and emissions of other climatically active gases from biogenic and photochemical sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115211DOI Listing

Publication Analysis

Top Keywords

sulfate aerosols
20
climatically active
16
active gases
16
western pacific
16
concentrations dms
16
dms ocs
16
organic matter
12
atmospheric sulfate
8
aerosols western
8
kuroshio-oyashio extension
8

Similar Publications

Component analysis and source identification of atmospheric aerosols at the neighborhood scale in a coastal industrial city in China.

Environ Pollut

December 2024

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).

View Article and Find Full Text PDF

This study intended to evaluate the clinical efficacy and safety of colistin sulfate aerosol inhalation in combination with ceftazidime-avibactam for the treatment of pulmonary carbapenem-resistant (CRKP) infection during the peri-operative period of liver transplantation. A retrospective analysis was designed to investigate 52 patients who developed pulmonary CRKP infection after liver transplantation between December 1, 2019, and November 30, 2022. On the basis of whether they received colistin sulfate aerosol inhalation, the patients were divided into the treatment group ( = 29) and the control group ( = 23).

View Article and Find Full Text PDF

Spatio-temporal analysis of extreme air pollution and risk assessment.

J Environ Manage

December 2024

Department of Civil Engineering, Indian Institute of Technology Indore, Simrol, Indore, 453552, Madhya Pradesh, India. Electronic address:

Extreme air pollution poses global health and environmental threats, necessitating robust policy interventions. This study first analyses the surface mass concentration of major aerosols (such as black carbon, organic carbon, dust, sea salts, and sulphates) to estimate global PM concentrations from 1980 to 2023. The developed model-estimated PM database was validated against data from 526 cities worldwide, showing strong accuracy, with RMSE, r, and R values of 7.

View Article and Find Full Text PDF

Hydroxyacetone (HA) is an atmospheric oxidation product of isoprene and other organic precursors that can form brown carbon (BrC). Measured bulk aqueous-phase reaction rates of HA with ammonium sulfate, methylamine, and glycine suggest that these reactions cannot compete with aqueous-phase hydroxyl radical oxidation. In cloud chamber photooxidation experiments with either gaseous or particulate HA in the presence of the same N-containing species, BrC formation was minor, with similar mass absorption coefficients at 365 nm (<0.

View Article and Find Full Text PDF

Source-dependent absorption Ångström exponent in the Los Angeles Basin: Multi-time resolution factor analyses of ambient PM and aerosol optical absorption.

Sci Total Environ

December 2024

Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA.

Advanced receptor models can leverage the information derived from optical and chemical variables as input by a variety of instruments at different time resolutions to extract the source specific absorption Ångström exponent (AAE) from aerosol absorption. The multilinear engine (ME-2), a Positive Matrix Factorization (PMF) solver, serves as a proficient tool for performing such analyses, thereby overcoming the constraints imposed by the assumptions in current optical source apportionment methods such as the Aethalometer approach since the use of a-priori AAE values introduces additional uncertainty into the results of optical methods. Comprehensive PM chemical speciation datasets, and aerosol absorption coefficients (b, λ) at seven wavelengths measured by an Aethalometer (AE33), were used in multi-time source apportionment (MT-PMF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!