To examine micro- and macrolinguistic underpinnings of circumstantiality in temporal lobe epilepsy (TLE), we examined the elicited narrative output of 15 individuals with TLE and 14 controls. To replicate and extend Field and colleagues' (2000) work, participants were asked to produce five immediately consecutive elicitations of an eight-frame cartoon "Cowboy Story" (Joanette et al., 1986). Following transcription and coding, detailed multi-level discourse analysis demonstrated a typical pattern of compression in controls. The narratives produced by individuals with TLE were less fluent, cohesive, and coherent across trials: producing fewer novel units and more repetitive and extraneous content. Significant group by trial interactions in sample length, spontaneous duration, and statements, were not explained by seizure burden, age, or lexical retrieval deficits. These findings suggest that they do not benefit from repeated engagement with a narrative in the same manner as controls. Disturbed social cognition and pragmatics in TLE might underpin communication inefficiencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2022.107069 | DOI Listing |
Epilepsia
January 2025
Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurosurgery, Medical University of Vienna, Vienna, Austria.
Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.
Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.
J Clin Med
December 2024
Degenerative and Chronic Diseases of the Faculty of Health Sciences (FGW), University Potsdam, 14469 Potsdam, Germany.
: About 65 million people worldwide are affected by epilepsy, with temporal lobe epilepsy being the most common type resistant to drugs and often requiring surgical treatment. Although open surgical approaches, such as temporal lobectomy, have been the method of choice for decades, minimally invasive MRgLITT has demonstrated promising results. However, it remains unknown whether patients who underwent one of these two approaches would show better performance on vestibulo-spatial tasks.
View Article and Find Full Text PDFJpn J Radiol
January 2025
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the School of Biomedical Engineering (B.C., H.H., J.L., S.Y., Y.C., J.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurosurgery (S.J., J.H., L.C.), and PET Center (W.B.), Huashan Hospital, Fudan University, Shanghai, China.
Background And Purpose: Epilepsy, a globally prevalent neurological disorder, necessitates precise identification of the epileptogenic zone (EZ) for effective surgical management. While the individual utilities of FDG PET and FMZ PET have been demonstrated, their combined efficacy in localizing the epileptogenic zone remains underexplored. We aim to improve the non-invasive prediction of epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) by combining FDG PET and FMZ PET with statistical feature extraction and machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!