Serious concerns have recently been raised regarding the association of Fe excess with neurodegenerative diseases in mammals and nutritional and oxidative disorders in plants. Therefore, the current study aimed to understand the physiological changes induced by Fe excess in Pistia stratiotes, a species often employed in phytoremediation studies. P. stratiotes were subjected to five concentrations of Fe: 0.038 (control), 1.0, 3.0, 5.0 and 7.0 mM. Visual symptoms of Fe-toxicity such as bronzing of leaf edges in 5.0 and 7.0 mM-grown plants were observed after 5 days. Nevertheless, no major changes were observed in photosynthesis-related parameters at this time-point. In contrast, plants growing for 10 days in high Fe concentrations showed decreased chlorophyll concentrations and lower net CO assimilation rate. Notwithstanding, P. stratiotes accumulated high amounts of Fe, especially in roots (maximum of 10,000 µg g DW) and displayed a robust induction of the enzymatic antioxidant system. In conclusion, we demonstrated that P. stratiotes can be applied to clean up Fe-contaminated water, as the species displays high Fe bioaccumulation, mostly in root apoplasts, and can maintain physiological processes under Fe excess. Our results further revealed that by monitoring visual symptoms, P. stratiotes could be applied for bioindication purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130701 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany.
Herbivores are generally considered to reduce plant fitness. However, as in natural communities they often feed on several competing plant species, herbivores can also increase plant fitness by reducing interspecific competition among plants. In this study, we developed a testable model to predict plant fitness in the presence of an interspecific competitor and a herbivore that feeds on both plant species.
View Article and Find Full Text PDFPhysiol Plant
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Pinellia ternata is an herb species in the Pinellia genus with significant economic value due to its medicinal properties. Understanding the accumulation and spatial distribution characteristics of metabolites during the development of the medicinal part, the rhizome of P. ternata (PR), provides a basis for targeted metabolic regulation and quality evaluation.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China.
Colocasia esculenta ranks as the fifth most important tuber crop and is known for its high nutritional and medicinal value. However, there is no research on its mitochondrial genome, hindering in-depth exploration of its genomic resources and genetic relationships. Using second- and third-generation sequencing technologies, we assembled and annotated the mitogenome of C.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!