Fish body condition and growth are two interrelated traits closely associated with species life history and fitness, whose trade-off can ultimately impact population dynamics albeit seldom empirically demonstrated. They can intricately affect survival rates, which are particularly relevant for species under exploitation. Using individual spatiotemporal information in Northwestern Mediterranean, we document for the first time the existence of a trade-off between condition and growth in regulating survival dynamics in two important fish species for the Mediterranean fisheries that are characterized by contrasting life histories. For the European hake (Merluccius merluccius), a benthopelagic species, juveniles' body condition was detected to be positively linked to survival and negatively associated with the growth of this age group. For the red mullet (Mullus barbatus), the same pattern was observed for young adults. We also show that the observed patterns on a regional level have a clear spatial dependence as we found that observed body condition over a local scale had a broad effect on the population dynamics of the whole region, with the Ebro delta area emerging as the demographic engine of the two species. We discuss our results in the context of fisheries management and underline the importance of improving current stock assessment models and spatially based fishery management towards incorporating body condition and growth due to their influence on important parameters such as survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2022.105844 | DOI Listing |
Chem Biodivers
January 2025
Biruni Universitesi, Molecular Biology and Genetics, Biruni Uni, İstanbul, TURKEY.
Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.
View Article and Find Full Text PDFMol Breed
January 2025
Department of Agricultural Biotechnology, Genome and Stem Cell Center, Erciyes University, Kayseri, 38280 Türkiye.
This study investigated the potential of extended irradiation combined with immature embryo culture techniques to accelerate generation advancements in safflower ( L.) breeding programs. We developed an efficient speed breeding method by applying light-emitting diodes (LEDs) that emit specific wavelengths, alongside the in vitro germination of immature embryos under controlled environmental conditions.
View Article and Find Full Text PDFMol Breed
January 2025
Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.
Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.
View Article and Find Full Text PDFUnlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.
View Article and Find Full Text PDFSkeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!