We investigated the impact of invasive vegetation on mercury cycles, and identified microorganisms directly related to Hg(II) methylation using hgcA gene in vegetated mud flats (VMF) inhabited by native Suaeda japonica (SJ) and invasive Spartina anglica (SA), and unvegetated mud flats (UMF) in Ganghwa intertidal sediments. Sulfate reduction rate (SRR) and rate constants of Hg(II) methylation (K) and methyl-Hg demethylation (K) were consistently greater in VMF than in UMF, specifically 1.5, 2 and 11.7 times higher, respectively, for SA. Both K and K were significantly correlated with SRR and the abundance of sulfate-reducing bacteria. These results indicate that the rhizosphere of invasive SA provides a hotspot for Hg dynamics coupled with sulfate reduction. HgcA gene analysis revealed that Hg(II)-methylators were dominated by Deltaproteobacteria, Chloroflexi and Euryarchaeota, comprising 37.9%, 35.8%, and 6.5% of total hgcA gene sequences, respectively, which implies that coastal sediments harbor diverse Hg(II)-methylating microorganisms that previously underrepresented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.114498DOI Listing

Publication Analysis

Top Keywords

hgca gene
16
invasive spartina
8
spartina anglica
8
gene analysis
8
hgii methylation
8
mud flats
8
sulfate reduction
8
impacts invasive
4
anglica c-s-hg
4
c-s-hg cycles
4

Similar Publications

Distribution and Environmental Preference of Potential Mercury Methylators in Paddy Soils across China.

Environ Sci Technol

January 2025

National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China.

View Article and Find Full Text PDF

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Mercury Immobilization without Methylation in Sulfidogenic Systems Dominated by Sulfur Disproportionating Bacteria.

Environ Sci Technol

November 2024

Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.

The sulfidogenic process mediated by sulfate-reducing bacteria (SRB) is not ideal for treating mercury (Hg)-bearing wastewater due to the risk of methylmercury (MeHg) production. Addressing this challenge, our study demonstrated that, under S-rich conditions and without organic additives, sulfidogenic communities dominated by sulfur-disproportionating bacteria (SDB) can effectively remove Hg(II) and prevent MeHg production. Using various inocula, we successfully established biological sulfidogenic systems driven separately by SDB and SRB.

View Article and Find Full Text PDF

Quinolone antibiotics stimulate bacterial mercury methylation by Geobacter metallireducens GS-15.

Bioresour Technol

December 2024

Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address:

Bacterial mercury (Hg) methylation is critical for bioremediating Hg pollution, but the impact of emerging antibiotics on this process has rarely been reported. This study innovatively investigated the interactions between Hg-methylating bacteria of Geobacter metallireducens GS-15 and two quinolone antibiotics: lomefloxacin (LOM) and ciprofloxacin (CIP) at 5 μg/L. Short-term LOM exposure increased methylmercury (MeHg) yield by 36 % compared to antibiotic-free conditions, caused by hormesis to alter bioactivities of single GS-15 cells.

View Article and Find Full Text PDF

Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!