Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines.

Rep Prog Phys

Escuela de Ciencia y Tecnología and ICIFI, Universidad de San Martín, Av. 25 de Mayo y Francia, 1650 Buenos Aires, Argentina.

Published: January 2023

We present an overview of recent advances in the study of energy dynamics and mechanisms for energy conversion in qubit systems with special focus on realizations in superconducting quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat generation, energy transport and energy conversion in these systems with and without time-dependent driving considering the effect of equilibrium and non-equilibrium environments. We analyze specific problems and mechanisms under current investigation in the context of qubit systems. These include the problem of energy dissipation and possible routes for its control, energy pumping between driving sources and heat pumping between reservoirs, implementation of thermal machines and mechanisms for energy storage. We highlight the underlying fundamental phenomena related to geometrical and topological properties, as well as many-body correlations. We also present an overview of recent experimental activity in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6633/acb06bDOI Listing

Publication Analysis

Top Keywords

energy
8
energy dynamics
8
mechanisms energy
8
energy conversion
8
qubit systems
8
dynamics heat
4
heat production
4
production heat-work
4
heat-work conversion
4
conversion qubits
4

Similar Publications

A systematic series of QM cluster models has been developed to predict the trend in the carbonic anhydrase binding affinity of a structurally diverse dataset of ligands. Reference DLPNO-CCSD(T)/CBS binding energies were generated for a cluster model and used to evaluate the performance of contemporary density functional theory methods, including Grimme's "3c" DFT composite methods (rSCAN-3c and ωB97X-3c). It is demonstrated that when validated QM methods are used, the predictive power of the cluster models improves systematically with the size of the cluster models.

View Article and Find Full Text PDF

Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.

Phys Eng Sci Med

January 2025

School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.

Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.

View Article and Find Full Text PDF

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

MR imaging of proton beam-induced oxygen depletion.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.

View Article and Find Full Text PDF

Nanobodies or variable antigen-binding domains (VH) derived from heavy chain-only antibodies (HcAb) occurring in the Camelidae family offer certain superior physicochemical characteristics like enhanced stability, solubility, and low immunogenicity compared to conventional antibodies. Their efficient antigen-binding capabilities make them a preferred choice for next-generation small biologics. In the present work, we design an anti-SARS-CoV-2 bi-paratopic nanobody drug conjugate by screening a nanobody database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!