Application of sequential cyclic compression on cancer cells in a flexible microdevice.

PLoS One

Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.

Published: January 2023

Mechanical forces shape physiological structure and function within cell and tissue microenvironments, during which cells strive to restore their shape or develop an adaptive mechanism to maintain cell integrity depending on strength and type of the mechanical loading. While some cells are shown to experience permanent plastic deformation after a repetitive mechanical tensile loading and unloading, the impact of such repetitive compression on deformation of cells is yet to be understood. As such, the ability to apply cyclic compression is crucial for any experimental setup aimed at the study of mechanical compression taking place in cell and tissue microenvironments. Here, we demonstrate such cyclic compression using a microfluidic compression platform on live cell actin in SKOV-3 ovarian cancer cells. Live imaging of the actin cytoskeleton dynamics of the compressed cells was performed for varying pressures applied sequentially in ascending order during cell compression. Additionally, recovery of the compressed cells was investigated by capturing actin cytoskeleton and nuclei profiles of the cells at zero time and 24 h-recovery after compression in end point assays. This was performed for a range of mild pressures within the physiological range. Results showed that the phenotypical response of compressed cells during recovery after compression with 20.8 kPa differed observably from that for 15.6 kPa. This demonstrated the ability of the platform to aid in the capture of differences in cell behaviour as a result of being compressed at various pressures in physiologically relevant manner. Differences observed between compressed cells fixed at zero time or after 24 h-recovery suggest that SKOV-3 cells exhibit deformations at the time of the compression, a proposed mechanism cells use to prevent mechanical damage. Thus, biomechanical responses of SKOV-3 ovarian cancer cells to sequential cyclic compression and during recovery after compression could be revealed in a flexible microdevice. As demonstrated in this work, the observation of morphological, cytoskeletal and nuclear differences in compressed and non-compressed cells, with controlled micro-scale mechanical cell compression and recovery and using live-cell imaging, fluorescent tagging and end point assays, can give insights into the mechanics of cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815655PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279896PLOS

Publication Analysis

Top Keywords

cyclic compression
16
cancer cells
16
compressed cells
16
cells
15
compression
13
sequential cyclic
8
flexible microdevice
8
cell tissue
8
tissue microenvironments
8
skov-3 ovarian
8

Similar Publications

Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach.

Polymers (Basel)

January 2025

Department of Mechanical Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

This study presents a methodology for characterizing the constituent properties of composite materials by back-calculating from the laminate behavior under fatigue loading. Composite materials consist of fiber reinforcements and a polymer matrix, with the fatigue performance of the laminate governed by the interaction between these constituents. Due to the challenges in directly measuring the properties of individual fibers and the polymer matrix, a reverse-engineering approach was employed.

View Article and Find Full Text PDF

In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal-mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel.

View Article and Find Full Text PDF

This paper presents an experimental method for estimating the fatigue limit of trabecular bone using a single trabecular bone sample, the microstructural parameters of which were determined by microCT. Fatigue tests were carried out using the Locati method, with stepwise increasing load amplitude. The fatigue limits of the trabecular structures were determined experimentally in accordance with Miner's law of fatigue damage accumulation, based on the parameters of the reference S-N curve taken from the literature.

View Article and Find Full Text PDF

A novel approach to assess coordination in people with transtibial amputations using continuous and event relative phase.

J Biomech

January 2025

UNC-NC State Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 1407, Engineering Building III, 1840 Entrepreneur Drive, Raleigh, NC 27695, USA. Electronic address:

Continuous relative phase (CRP) quantifies coordination for cyclic motions as the difference in the phase portrait locations between its constituent coordinates and has been widely used in populations with neuromuscular impairments. Continuous analyses, like statistical parameter mapping (SPM), provide greater resolution than traditional techniques that first compress CRP across a section of the cycle to a single point, like mean average relative phase (MARP). However, both analyses neglect the effect of intermediate event timing (e.

View Article and Find Full Text PDF

Template-Thermally Induced Phase Separation-Assisted Microporous Regulation in Poly(lactic acid) Aerogel for Sustainable Radiative Cooling.

Biomacromolecules

January 2025

National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.

Herein, an eco-friendly and degradable poly(lactic acid) aerogel was prepared by combining a poly(ethylene glycol) template material with thermally induced phase separation. Due to the tailored pore size introduced by the template material, the aerogel exhibits high solar reflectance (92.0%), excellent thermal emittance (90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!