Background: The benefits of real-time continuous glucose monitoring (RT-CGM) are well established for patients with type 1 diabetes (T1D) and patients with insulin-treated type 2 diabetes (T2D). However, the usage and effectiveness of RT-CGM in the context of non-insulin-treated T2D has not been well studied.
Objective: We aimed to assess glycemic metrics and rates of RT-CGM feature utilization in users with T1D and non-insulin-treated T2D.
Methods: We retrospectively analyzed data from 33,685 US-based users of an RT-CGM system (Dexcom G6; Dexcom, Inc) who self-identified as having either T1D (n=26,706) or T2D and not using insulin (n=6979). Data included glucose concentrations, alarm settings, feature usage, and event logs.
Results: The T1D cohort had lower proportions of glucose values in the 70 mg/dl to 180 mg/dl range than the T2D cohort (52.1% vs 70.8%, respectively), with more values indicating hypoglycemia or hyperglycemia and higher glycemic variability. Discretionary alarms were enabled by a large majority in both cohorts. The data sharing feature was used by 38.7% (10,327/26,706) of those with T1D and 10.4% (727/6979) of those with T2D, and the mean number of followers was higher in the T1D cohort. Large proportions of patients with T1D or T2D enabled and customized their glucose alerts. Retrospective analysis features were used by the majority in both cohorts (T1D: 15,783/26,706, 59.1%; T2D: 3751/6979, 53.8%).
Conclusions: Similar to patients with T1D, patients with non-insulin-treated T2D used RT-CGM system features, suggesting beneficial, routine engagement with data by patients and others involved in their care. Motivated patients with diabetes could benefit from RT-CGM coverage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947825 | PMC |
http://dx.doi.org/10.2196/43991 | DOI Listing |
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFNat Methods
January 2025
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.
View Article and Find Full Text PDFNat Med
January 2025
Food Is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
Sci Rep
January 2025
Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).
View Article and Find Full Text PDFIntroduction: The most frequent form of diabetes in pediatric patients is polygenic autoimmune diabetes (T1D), but single-gene variants responsible for autoimmune diabetes have also been described. Both disorders share clinical features, which can lead to monogenic forms being misdiagnosed as T1D. However, correct diagnosis is crucial for therapeutic choice, prognosis and genetic counseling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!