A Medicago truncatula lncRNA MtCIR1 negatively regulates response to salt stress.

Planta

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.

Published: January 2023

A lncRNA MtCIR1 negatively regulates the response to salt stress in Medicago truncatula seed germination by modulating seedling growth and ABA metabolism and signaling by enhancing Na accumulation. Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in the regulation of plant tolerance to varying abiotic stresses. A large number of lncRNAs that are responsive to abiotic stress have been identified in plants; however, the mechanisms underlying the regulation of plant responses to abiotic stress by lncRNAs are largely unclear. Here, we functionally characterized a salt stress-responsive lncRNA derived from the leguminous model plant M. truncatula, referred to as MtCIR1, by expressing MtCIR1 in Arabidopsis thaliana in which no such homologous sequence was observed. Expression of MtCIR1 rendered seed germination more sensitive to salt stress by enhanced accumulation of abscisic acid (ABA) due to suppressing the expression of the ABA catabolic enzyme CYP707A2. Expression of MtCIR1 also suppressed the expression of genes associated with ABA receptors and signaling. The ABA-responsive gene AtPGIP2 that was involved in degradation of cell wall during seed germination was up-regulated by expressing MtCIR1. On the other hand, expression of MtCIR1 in Arabidopsis thaliana enhanced foliar Na accumulation by down-regulating genes encoding Na transporters, thus rendering the transgenic plants more sensitive to salt stress. These results demonstrate that the M. truncatula lncRNA MtCIR1 negatively regulates salt stress response by targeting ABA metabolism and signaling during seed germination and foliar Na accumulation by affecting Na transport under salt stress during seedling growth. These novel findings would advance our knowledge on the regulatory roles of lncRNAs in response of plants to salt stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-022-04064-1DOI Listing

Publication Analysis

Top Keywords

salt stress
28
seed germination
16
lncrna mtcir1
12
mtcir1 negatively
12
negatively regulates
12
expression mtcir1
12
mtcir1
9
stress
9
medicago truncatula
8
truncatula lncrna
8

Similar Publications

Introduction: Melatonin significantly enhances the tolerance of plants to biotic and abiotic stress, and plays an important role in plant resistance to salt stress. However, its role and molecular mechanisms in eggplant salt stress resistance have been rarely reported. In previous studies, we experimentally demonstrated that melatonin can enhance the salt stress resistance of eggplants.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

Guava is a fruit crop widely exploited in the Northeast region of Brazil. However, its exploitation is limited by water scarcity and, in many cases, producers are forced to use water with high levels of salts in irrigation. Thus, it is necessary to develop techniques to induce plant tolerance to salt stress, and the foliar application of a non-enzymatic compound such as ascorbic acid is a promising alternative to mitigate the deleterious effects on plants.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!