We have designed, built, tested, and deployed an autonomous analyzer for seawater total alkalinity. Such analyzers are required to understand the ocean carbon cycle, including anthropogenic carbon dioxide (CO) uptake and for mitigation efforts via monitoring, reporting, and verification of carbon dioxide removal through ocean alkalinity enhancement. The microfluidic nature of our instrument makes it relatively lightweight, reagent efficient, and amenable for use on platforms that would carry it on long-term deployments. Our analyzer performs a series of onboard closed-cell titrations with three independent stepper-motor driven syringe pumps, providing highly accurate mixing ratios that can be systematically swept through a range of pH values. Temperature effects are characterized over the range 5-25 °C allowing for field use in most ocean environments. Each titration point requires approximately 170 μL of titrant, 830 μL of sample, 460 J of energy, and a total of 105 s for pumping and optical measurement. The analyzer performance is demonstrated through field data acquired at two sites, representing a cumulative 25 days of operation, and is evaluated against laboratory measurements of discrete water samples. Once calibrated against onboard certified reference material, the analyzer showed an accuracy of -0.17 ± 24 μmol kg. We further report a precision of 16 μmol kg, evaluated on repeated measurements of the aforementioned certified reference material. The total alkalinity analyzer presented here will allow measurements to take place in remote areas over extended periods of time, facilitating affordable observations of a key parameter of the ocean carbon system with high spatial and temporal resolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888396 | PMC |
http://dx.doi.org/10.1021/acssensors.2c02343 | DOI Listing |
Sci Total Environ
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.
Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:
Dietary Astragalus polysaccharides (APS) get wide application in aquaculture due to their excellent immunoregulatory effects. However, little is known about the effects of dietary APS on vaccine potency in fish. In the present study, large yellow croakers (Larimichthys crocea) were injected with formalin-inactivated Pseudomonas plecoglossicida after APS feeding for 14 d and then challenged by live P.
View Article and Find Full Text PDFIntroduction: Drinking contaminated water is a significant cause of mortality and morbidity in Sub-Saharan Africa, where access to safe drinking water is limited. Although numerous studies have investigated the bacteriological quality of drinking water in Ethiopia, their findings have been inconsistent and varied, hindering the implementation of effective water quality monitoring. Moreover, there is a lack of nationwide assessment of the bacteriological quality of drinking water in Ethiopia.
View Article and Find Full Text PDFFront Immunol
January 2025
Indian Council of Agriculture Research (ICAR)-Central Institute of Freshwater Aquaculture (CIFA), Fish Health Management Division, Bhubaneswar, Odisha, India.
Background: Aquaculture systems that sporadically depend on antibiotics can contribute to the development of adverse effects on the fish, microbial flora and the environment. This study sought to investigate the impacts of extended oxytetracycline supplementation on the freshwater stinging catfish through a multi-biomarker approach.
Methods: A total of 300 (20 ± 0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!