The robust innate immune system of the earthworm provides a potential source of natural antimicrobial peptides (AMPs). However, the cost and high rediscovery rate of direct separation and purification limits their discovery. Genome sequencing of numerous earthworm species facilitates the discovery of new antimicrobial peptides. Through predicting potential antimicrobial peptides in the open reading frames of the Eisenia andrei genome and sequence optimization, a novel antimicrobial peptide, named EWAMP-R (RIWWSGGWRRWRW), was identified. EWAMP-R demonstrated good activity against various bacteria, including drug-resistant strains. The antibacterial mechanisms of EWAMP-R were explored through molecular simulation and wet-laboratory experiments. These experiments demonstrated that the bacterial membrane may be one of the targets of EWAMP-R but that there may be different interactions with Gram-negative and Gram-positive bacterial membranes. EWAMP-R can disrupt bacterial membrane integrity; however, at low concentrations, it appears that EWAMP-R may get through the membrane of Escherichia coli instead of damaging it directly, implying the existence of a secondary response. Gene expression studies identified that in E. coli, only the apoptosis-like cell death (ALD) pathway was activated, while in Staphylococcus aureus, the MazEF pathway was also upregulated, limiting the influence of the ALD pathway. The different antimicrobial actions against Gram-positive and -negative bacteria can provide important information on the structure-activity relationship of AMPs and facilitate AMP design with higher specificity. This study identified a new source of antibacterial agents that has the potential to address the increasingly serious issue of antibiotic resistance. Drug-resistant bacteria are a great threat to public health and drive the search for new antibacterial agents. The living environment of earthworms necessitates a strong immune system, and therefore, they are potentially a rich resource of novel antibiotics. A novel AMP, EWAMP-R, with high antibacterial activity was found through analysis of the Eisenia andrei genome. Molecular analysis investigating the interactions between EWAMP-R and the cell membrane demonstrated the importance of tryptophan and arginine residues to EWAMP-R activity. Additionally, the different secondary responses found between E. coli and S. aureus were in accordance with a common phenomenon where some antibacterial agents only target specific species of bacteria. These results provided useful molecular information to support further AMP research and design. Our study expands the sources of antimicrobial peptides and also helps to explain the adaptability of earthworms to their environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927515PMC
http://dx.doi.org/10.1128/spectrum.03206-22DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
16
antibacterial agents
12
ewamp-r
9
novel antimicrobial
8
antimicrobial peptide
8
immune system
8
eisenia andrei
8
andrei genome
8
bacterial membrane
8
ald pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!