Gut symbiotic bacteria are known to be closely related to insect development, nutrient metabolism, and disease resistance traits, but the most important factors leading to changes in these communities have not been well clarified. To address this, we examined the associations between the gut symbiotic bacteria and the host genotype and geographical distribution of Solenopsis invicta in China, where it is invasive and has spread primarily by human-mediated dispersal. Thirty-two phyla were detected in the gut symbiotic bacteria of . Proteobacteria were the most dominant group among the gut symbiotic bacteria. Furthermore, the Bray-Curtis dissimilarity matrices of the gut symbiotic bacteria were significantly positively correlated with the geographical distance between the host ant colonies, but this relationship was affected by the social form. The distance between monogyne colonies had a significant effect on the Bray-Curtis dissimilarity matrices of gut symbiotic bacteria, but the distance between polygyne colonies did not. Moreover, the Bray-Curtis dissimilarity matrices were positively correlated with Nei's genetic distance of the host but were not correlated with the COI-based genetic distance. This study provides a scientific basis for further understanding the ecological adaptability of red imported fire ants during invasion and dispersal. We demonstrated that gut microbiota composition and diversity varied among populations. These among-population differences were associated with host genotype and geographical distribution. Our results suggested that population-level differences in gut microbiota may depend more on environmental factors than on host genotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927370 | PMC |
http://dx.doi.org/10.1128/spectrum.03585-22 | DOI Listing |
Mucosal Immunol
January 2025
Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States. Electronic address:
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check, while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, when microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens.
View Article and Find Full Text PDFMicroorganisms
January 2025
College of Plant Protection, China Agricultural University, Beijing 100193, China.
The evolution of phytophagous insects has resulted in the development of feeding specializations that are unique to this group. The majority of current research on insect palatability has concentrated on aspects of ecology and biology, with relatively little attention paid to the role of insect gut symbiotic bacteria. Symbiont bacteria have a close relationship with their insect hosts and perform a range of functions.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, Nanjing, China 210095.
Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO to CH by methanogens.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Biomic Auth, Bioanalysis and Omics Laboratory, Centre for Interdisciplinary Research of Aristotle, University of Thessaloniki, Innovation Area of Thessaloniki, Thermi, Greece.
The gut's symbiome, a hidden metabolic organ, has gained scientific interest for its crucial role in human health. Acting as a biochemical factory, the gut microbiome produces numerous small molecules that significantly impact host metabolism. Metabolic profiling facilitates the exploration of its influence on human health and disease through the symbiotic relationship.
View Article and Find Full Text PDFPrz Gastroenterol
March 2024
Department of General Surgery, Medical Centre of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
Introduction: The gut microbiome maintains the mucus membrane barrier's integrity, and it is modulated by the host's immune system.
Aim: To detect the effect of microbiota modulation using probiotics, prebiotics, symbiotics, and natural changes on colorectal cancers (CRCs).
Methods: A PubMed search was conducted to retrieve the original and articles published in English language from 2010 until 2021 containing the following keywords: 1) CRCs, 2) CRCs treatment (i.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!