Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: acrylamide is formed by the Maillard reaction and is found in many food products subjected to thermal processes, generating genotoxicity and DNA damage. Studies have reported that lactobacilli have the ability to generate compounds with antioxidant, antigenotoxic and antimutagenic activity, which is why the present work aims to evaluate the effect of Lactobacillus strains and their intra and extracellular extracts against genotoxicity and oxidative stress as caused by acrylamide. Methods: a strain of Lactobacillus casei Shirota and a strain of Lactobacillus reuteri NRRL B-14171 were used, both were cultured in MRS broth and subjected to mechanical and enzymatic treatments to obtain extra and intracellular extracts. Lymphocytes were cultured in RPMI medium. Lipid peroxidation was evaluated by TBARS and the antioxidant capacity was measured in the extra and intracellular extracts with the ABTS technique, also using a strain of Saccharomyces cerevisiae RC 212 as a model. The reduction of lipid peroxidation in lymphocytes was measured by TBARS and the reduction of genotoxicity by reducing the formation of micronuclei in lymphocytes. Results: both strains evaluated, as well as their intra and extracellular extracts, showed the ability to counteract oxidative stress and genotoxicity caused by acrylamide. Conclusion: the results found suggest that the use of intra and extracellular extracts of both strains could be an alternative to reduce the effects of genotoxicity and oxidative stress caused by acrylamide without the need for a viable structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.20960/nh.04241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!