The stoichiometry characteristics of carbon (C), nitrogen (N), and phosphorus (P) is an important indicator of soil quality and ecosystem nutrient limitations. Exploring the effects of land use type and soil depth on soil nutrient stoichiometry can clarify soil nutrient cycling. In this study, we collected soil samples from sites with five different land use types (irrigated cropland, rainfed cropland, sandy grassland, fixed dunes, and mobile dunes) in the Horqin Sandy Land, and evaluated the influences of land use type and soil depth on the contents and stoichiometry characteristics of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP). We found that: 1) SOC (3.23 g·kg), TN (0.37 g·kg), and TP (0.15 g·kg) contents and stoichiometry characteristics (C:N, C:P, N:P was 9.07, 25.56, 2.97, respectively) to a depth of 10 cm in the Horqin Sandy Land were significantly lower than the mean values of soils in China. 2) Soil stoichiometry characteristics differed significantly among land use types. The contents of SOC, TN, and TP to a depth of 100 cm were highest in irrigated cropland, followed by sandy grassland, rainfed cropland, fixed dunes, and mobile dunes. The C:N ratios in sandy grassland, irrigated cropland, and rainfed cropland were significantly higher than those in the fixed dune and mobile dune sites. C:P ratios in the sandy grassland, fixed dunes, irrigated cropland, and rainfed cropland were significantly higher than that in the mobile dunes. The N:P ratio differed little among the five land use types. 3) SOC and TN contents in the sandy grassland, fixed dunes, irrigated cropland, and rainfed cropland decreased with increasing soil depth. SOC, TN, and C:P in the mobile dunes and TP and C:N in all land use types showed no variation among depths. The C:P ratio of sandy grassland, fixed dunes, irrigated cropland, and rainfed cropland and the N:P ratio of sandy grassland decreased with increasing soil depth. 4) SOC, TN, and TP contents and the C:N ratio were significantly negatively correlated with the contents of medium and fine sands and with soil bulk density, but significantly positively correlated with silt+clay, and very fine sand contents. Desertification led to losses of SOC and nutrients in the Horqin Sandy Land, and exacerbated soil N deficiency. Inputs of water and ferti-lizer helped cropland to maintain a relatively high level of soil nutrients.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202212.014DOI Listing

Publication Analysis

Top Keywords

sandy grassland
28
irrigated cropland
24
rainfed cropland
24
stoichiometry characteristics
20
land types
20
cropland rainfed
20
fixed dunes
20
horqin sandy
16
sandy land
16
soil depth
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!