Background: Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD.
Methods: To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses.
Results: We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance.
Conclusions: Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0033291722003750 | DOI Listing |
J Prev Alzheimers Dis
February 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:
Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.
View Article and Find Full Text PDFMAGMA
January 2025
Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Objectives: Caffeine, a known neurostimulant and adenosine antagonist, affects brain physiology by decreasing cerebral blood flow. It interacts with adenosine receptors to induce vasoconstriction, potentially disrupting brain homeostasis. However, the impact of caffeine on blood-brain barrier (BBB) permeability to water remains underexplored.
View Article and Find Full Text PDFPlant Commun
January 2025
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University; Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms to sub-zero temperatures. We begin by introducing the research history of convergent and parallel evolution, defining all independent similarities as convergent evolution.
View Article and Find Full Text PDFNMR Biomed
March 2025
Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.
View Article and Find Full Text PDFExp Physiol
January 2025
Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA.
A reduction in cerebral blood flow (CBF) has been observed during spaceflight and bed rest. We aimed to examine the magnitude and regional heterogeneity of the decrease in CBF during bed rest compared to posture changes on Earth. Seventeen participants (age, 29 ± 9 years, 7 females) were studied in the upright and supine posture and over 3 days of bed rest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!