Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been implicated in the etiology of various human malignant tumors; however, its exact role in bladder cancer (BC) remains to be explored. Through reverse transcription‑quantitative PCR, western blotting and immunohistochemistry detection of BC tissue, combined with The Cancer Genome Atlas (TCGA) database analysis, the present study demonstrated that MTHFD2 was upregulated in BC tissues. MTHFD2 expression in patients with BC was frequently associated with worse prognosis, tumor immune cell infiltration and programmed death‑ligand 1 (PD‑L1) expression. Subsequently, using short hairpin RNA, the expression levels of MTHFD2 were knocked down in BC cell lines, and the results revealed that the tumor cell proliferation and colony formation abilities of cells were greatly reduced, as determined by Cell Counting Kit 8 and colony formation assays, as was the expression of PD‑L1, as determined by western blotting. These findings were also confirmed in a xenograft nude mouse model. Simultaneously, it was revealed that abnormal expression of MTHFD2 was closely associated with the PI3K/AKT signaling pathway in both RNA‑sequencing and TCGA datasets. This observation was verified by detecting the protein expression levels of PI3K and AKT by western blotting. The activation of PI3K and AKT was enhanced in BC cells (T24) following stimulation with 740Y‑P, a PI3K activator, and cellular activities and PD‑L1 expression levels were restored. Finally, it was demonstrated that the MTHFD2 levels were correlated with chemosensitivity to traditional BC chemotherapeutic agents and various PI3K/AKT‑targeted drugs, as determined by analyzing the Genomics of Drug Sensitivity in Cancer database. Overall, the present findings revealed that upregulation of MTHFD2 was associated with PD‑L1 activation in BC via the PI3K/AKT signaling pathway, suggesting that it could be a promising marker of chemotherapy and immunotherapy for BC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9869724 | PMC |
http://dx.doi.org/10.3892/ijmm.2022.5217 | DOI Listing |
Neoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: It has been proposed that repeated exposure of bronchial epithelial cells to atmospheric particulate matter (PM) could disrupt airway epithelial integrity and lead to epithelial-to-mesenchymal transition (EMT) and ultimately airway remodeling. The molecular mechanisms underlying PM-related bronchial epithelial EMT have not yet been elucidated. The aim of this research is to clarify the molecular mechanism of EMT upon PM exposure.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China.
Background: Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!