Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has significantly progressed with a rapid increase from 10 to 19% due to state-of-the-art research on nonfullerene acceptor molecules and various device processing strategies. However, OSCs still exhibit significant open circuit voltage loss (Δ ∼ 0.6 V) due to high energetic offsets and molecular disorder. In this work, we present a systematic investigation to determine the effects of energetic offset and disorder on different recombination losses in open circuit voltage () using 13 different photoactive layers, wherein the PCE and Δ vary in the ranges of 2.21-14.74% and 0.561-1.443 V, respectively. The detailed voltage loss analysis of all these devices was carried out, and voltage losses were correlated with energetic offset and disorder. This has enabled us to identify the key features for minimizing the voltage loss like: (1) a low energy offset between the donor and acceptor molecular states is essential to attain a nonradiative voltage loss (Δ) as low as ∼200 meV and (2) Urbach energy, which is a measure of the materials' disorder and packing, should be low for the minimization of the radiative voltage loss (Δ). In addition, time-resolved photoluminescence spectroscopy was employed to further understand the exciton dynamics of pristine materials and donor-acceptor blends. It was observed that the absorbers with ultralong exciton lifetime (∼1000 ps) produce higher efficiencies. The current study emphasizes the importance of simultaneously testing photovoltaic performance and active layer exciton dynamics for rational device optimization and opens new prospects for designing novel molecules with fine-tuning of energetic offset and disorder with longer exciton lifetime which is the effective strategy to boost the efficiency of OSCs to their modified Shockley-Queisser (SQ) limit by minimizing radiative and nonradiative voltage losses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18199 | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas 75080, United States.
The formation of non-ion conducting byproducts on zinc anode is notoriously detrimental to aqueous zinc-ion batteries (AZIBs). Herein, we successfully transform a representative detrimental byproduct, crystalline zinc hydroxide sulfate (ZHS) to fast-ion conducting solid-electrolyte interphase (SEI) via amorphization and fluorination induced by suspending CaF nanoparticles in dilute sulfate electrolytes. Distinct from widely reported nonhomogeneous organic-inorganic hybrid SEIs that exhibit structural and chemical instability, the designed single-phase SEI is homogeneous, mechanically robust, and chemically stable.
View Article and Find Full Text PDFCureus
December 2024
Department of Medicine, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, IND.
Primary aldosteronism (PA) is a common cause of secondary hypertension, with familial hyperaldosteronism (FH) contributing to a lesser number of cases. FH type IV, a rare subtype, has hardly been reported as a subtype of PA cases. We present a case of a 27-year-old female who presented to the emergency department with circumoral tingling and numbness.
View Article and Find Full Text PDFNat Mater
January 2025
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China.
Monolithic all-perovskite tandem solar cells present a promising approach for exceeding the efficiency limit of single-junction solar cells. However, the substantial open-circuit voltage loss in the wide-bandgap perovskite subcell hinders further improvements in power-conversion efficiency. Here we develop wide-bandgap perovskite films with improved (100) crystal orientation that suppress non-radiative recombination.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!