Background: Charcot-Marie-Tooth disease (CMT) is among the most common group of inherited neuromuscular diseases. mutations were demonstrated to cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). However, there have been few case reports regarding to and gene mutation to CMT in Vietnamese patients, and the diagnosis of and in the clinical setting still overlapped.
Case Description: We report two patients presenting with sensorimotor neuropathy without cerebellar ataxia, spasticity and other neurological features, being diagnosed with intermediate form CMT by electrophysiological and clinical examination and neuroimaging. By whole-exome sequencing panel of two affected members, and PCR Sanger on and genes to confirm the presence of selected variants on their parents, we identified a novel missense variant (inherited from the mother) in an autosomal dominant heterozygous state, and two recessive variants (, causing missense variant, and , causing frameshift variant) (inherited one from the mother and another from the father) in these two patients. Clinical and electrophysiological findings on these patients did not match classical ARSACS. To the best of our knowledge, this is the first case report of two affected siblings diagnosed with CMT carrying both a novel variant and biallelic variants.
Conclusion: We concluded that this novel variant is likely benign, and biallelic mutation ( and ) is likely pathogenic for intermediate form CMT. This study is also expected to emphasize the current knowledge of intermediate form CMT, ARSACS, and the phenotypic spectrum of related and -related disorders. We expect to give a new understanding of CMT; however, further research should be conducted to provide a more thorough knowledge of the pathogenesis of CMT in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805609 | PMC |
http://dx.doi.org/10.25259/SNI_803_2022 | DOI Listing |
Sci Rep
January 2025
Saint Petersburg State University, St. Petersburg, 198504, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia.
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China.
The failure mode of thin-walled C-channel beams typically manifests as premature local buckling of the compression flange, leading to insufficient utilization of material strength in both the flange and the web. To address this issue, this study adopts the approach of increasing the number of bends to reinforce the flange and adding V-shaped stiffeners in the middle of the web to reduce the width-to-thickness ratio of the plate elements, thereby delaying local buckling and allowing for greater plastic deformation. However, the challenge lies in the irregular cross-sectional shape and complex buckling patterns.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Fatty acids (FAs) are essential building blocks for all the domains of life, of which bacterial de novo synthesis, called type II FA synthesis (FAS II), is energetically expensive. The recycling of exogenous FAs (eFAs) partially relieves the FAS II demand and, therefore, compromises the efficacy of FAS II-directed antimicrobials. The versatile acyl-acyl carrier protein (ACP) synthetase, AasS, enables bacterial channeling of diverse eFA nutrients through holo-ACP, an activated form of ACP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!