Objectives: Mask adherence continues to be a critical public health measure to prevent transmission of aerosol pathogens, such as SARS-CoV-2. We aimed to develop and deploy a computer vision algorithm to provide real-time feedback of mask wearing among staff in a hospital.
Design: Single-site, observational cohort study.
Setting: An urban, academic hospital in Boston, Massachusetts, USA.
Participants: We enrolled adult hospital staff entering the hospital at a key ingress point.
Interventions: Consenting participants entering the hospital were invited to experience the computer vision mask detection system. Key aspects of the detection algorithm and feedback were described to participants, who then completed a quantitative assessment to understand their perceptions and acceptance of interacting with the system to detect their mask adherence.
Outcome Measures: Primary outcomes were willingness to interact with the mask system, and the degree of comfort participants felt in interacting with a public facing computer vision mask algorithm.
Results: One hundred and eleven participants with mean age 40 (SD15.5) were enrolled in the study. Males (47.7%) and females (52.3%) were equally represented, and the majority identified as white (N=54, 49%). Most participants (N=97, 87.3%) reported acceptance of the system and most participants (N=84, 75.7%) were accepting of deployment of the system to reinforce mask adherence in public places. One third of participants (N=36) felt that a public facing computer vision system would be an intrusion into personal privacy.Public-facing computer vision software to detect and provide feedback around mask adherence may be acceptable in the hospital setting. Similar systems may be considered for deployment in locations where mask adherence is important.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742841 | PMC |
http://dx.doi.org/10.1136/bmjopen-2022-062707 | DOI Listing |
Sci Rep
January 2025
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, China.
This study introduces a deep learning-based automatic evaluation method for analyzing the microstructure of steel with scanning electron microscopy (SEM), aiming to address the limitations of manual marking and subjective assessments by researchers. By leveraging advanced computer vision algorithms, specifically a suitable model for long-term dendritic solidifications named Tang Rui Detect (TRD), the method achieves efficient and accurate detection and quantification of microstructure features. This approach not only enhances the training process but also simplifies loss function design, ultimately leading to a proper evaluation of surface modifications in steel materials.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer Science and Technology, East China Normal University, 200062, Shanghai, China.
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation. Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels, which significantly restricts their practical deployments on resource-limited devices. In this paper, we propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Musical, Plastic and Corporal Expression, University of Jaén, 23071 Jaén, Spain.
: Eye-foot coordination is essential in sports and daily life, enabling the synchronization of vision and movement for tasks like ball control or crossing obstacles. This study aimed to examine both the validity and reliability of an innovative eye-foot coordination (EFC) test in a dual-task paradigm in children aged 6-11 years and the capacity of this test to discriminate between sex and age. : A total of 440 schoolchildren aged 6-11 years participated in this cross-sectional study.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia.
Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of AI & Big Data, Honam University, Gwangju 62399, Republic of Korea.
This study proposes an advanced plant disease classification framework leveraging the Attention Score-Based Multi-Vision Transformer (Multi-ViT) model. The framework introduces a novel attention mechanism to dynamically prioritize relevant features from multiple leaf images, overcoming the limitations of single-leaf-based diagnoses. Building on the Vision Transformer (ViT) architecture, the Multi-ViT model aggregates diverse feature representations by combining outputs from multiple ViTs, each capturing unique visual patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!