Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9849139PMC
http://dx.doi.org/10.1038/s41586-022-05528-wDOI Listing

Publication Analysis

Top Keywords

npc assembly
16
quantitative map
12
nuclear pore
8
assembly
6
npc
5
nuclear
4
map nuclear
4
pore assembly
4
assembly reveals
4
reveals distinct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!