Supercooling of liquids leads to peculiarities which are scarcely studied under high-pressure conditions. Here, we report the surface tension, solubility, diffusivity, and partial molar volume for normal and supercooled liquid solutions of methane with p-xylene. Liquid bodies of perdeuterated p-xylene (p-CD), and, for comparison, o-xylene (o-CD), were exposed to pressurized methane (CH, up to 101 bar) at temperatures ranging 7.0-30.0 °C and observed at high spatial resolution (pixel size 20.3 μm) using a non-tactile neutron imaging method. Supercooling led to the increase of diffusivity and partial molar volume of methane. Solubility and surface tension were insensitive to supercooling, the latter substantially depended on methane pressure. Overall, neutron imaging enabled to reveal and quantify multiple phenomena occurring in supercooled liquid p-xylene solutions of methane under pressures relevant to the freeze-out in the production of liquefied natural gas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-022-27142-6 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812975 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!