To deepen understanding of diffusion-controlled crosslinking, molecular dynamics (MD) simulations are carried out by taking the diffusion image of 3,3'-diamino diphenyl sulfone (3,3'-DDS) and polyethersulfone (PES) with epoxy resin varying temperatures from 393.15 to 473.15 K over crosslinking conversion of 0-85%. The diffusion of PES and 3,3'-DDS into the bulk increased with increasing the temperature as a result of enhanced mobility of the molecules when the difference between the glass-transition temperature (T) and the curing temperature. Beyond the onset points of the converged crosslinking conversion ratio of 3,3'-DDS and PES, their diffusion properties are obviously restricted with crosslinking conversion ratio. At low crosslinking conversion ratios (> 10%), the diffusion coefficients of triglycidyl p-aminophenol (TGAP) were 1.1 times higher than those of diglycidyl ether of bisphenol F (DGEBF) because of the lower molecular weight of TGAP. On the other hand, the diffusion coefficients of TGAP decreased when the crosslinking ratio was up to ~ 60% because, compared with DGEBF, it had more functional groups available to react with the curing agent. At higher crosslinking ratios, the diffusion coefficients of both resins converged to zero as a result of their highly crosslinked structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813372 | PMC |
http://dx.doi.org/10.1038/s41598-022-26835-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!