Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high temperature, acidity, and heavy metal-rich environments associated with hot springs have a major impact on biological processes in resident cells. One group of photosynthetic eukaryotes, the Cyanidiophyceae (Rhodophyta), has successfully thrived in hot springs and associated sites worldwide for more than 1 billion years. Here, we analyze chromosome-level assemblies from three representative Cyanidiophyceae species to study environmental adaptation at the genomic level. We find that subtelomeric gene duplication of functional genes and loss of canonical eukaryotic traits played a major role in environmental adaptation, in addition to horizontal gene transfer events. Shared responses to environmental stress exist in Cyanidiales and Galdieriales, however, most of the adaptive genes (e.g., for arsenic detoxification) evolved independently in these lineages. Our results underline the power of local selection to shape eukaryotic genomes that may face vastly different stresses in adjacent, extreme microhabitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-022-35566-x | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812998 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!