Triplet acyl-alkyl radical pairs generated by pulsed laser excitation within the constraints of their nanocrystalline ketone precursors were recently introduced as a potential platform for the robust and repeated instantiation of spin qubit pairs for applications in quantum information science. Here, we report the transient spectroscopy of a series of nanocrystalline trityl-alkyl and trityl-aryl ketones capable of generating correlated triplet radical pairs with persistent triphenylmethyl radicals forced to remain within bonding distances of highly reactive acyl radicals. Whereas triplet trityl-acyl radical pairs decay by competing product-forming decarbonylation and intersystem crossing, triplet trityl-benzoyl radical pairs have lifetimes of up to ca. 4 ms and exclusively regenerate the starting ketone. We propose that these long lifetimes are the result of the short inter-radical distances and the colinear orientation of the two singly occupied orbitals, which are expected to result in large singlet-triplet energy gaps, large zero-field splitting parameters, and a poor geometry for spin-obit coupling. Ketones generating trityl-benzoyl radical pairs demonstrate promising performance along multiple dimensions that are crucial for quantum information science.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c11787DOI Listing

Publication Analysis

Top Keywords

radical pairs
24
long lifetimes
8
quantum science
8
trityl-benzoyl radical
8
pairs
7
radical
6
exceptionally long
4
lifetimes entangled
4
entangled acyl-trityl
4
acyl-trityl radical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!