SIRT3 ameliorates polycystic ovary syndrome through FOXO1/PGC-1α signaling pathway.

Endocrine

Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.

Published: April 2023

Background: Current studies have shown that Sirtuin3 (SIRT3) plays a key role in oocyte maturation. Polycystic ovary syndrome (PCOS) is a common disease caused by endocrine and metabolic abnormalities. The specific regulatory role and mechanism of SIRT3 in PCOS have not been reported.

Methods: SIRT3 was overexpressed in dihydrotestosterone (DHT)-induced PCOS model in mice. Ovary morphology, serum hormone level, and apoptosis of tissue cells were detected. The expression of SIRT3/Forkhead box protein O1 (FOXO1)/peroxlsome proliferator-activated receptor-γ coactlvat-1α (PGC-1α)-related proteins was detected. Then SIRT3 was overexpressed in DHT-induced human granulosa-like tumor cell line KGN. After the detection of the pathway-associated proteins, PGC-1α specific inhibitor SR-18292 was added to detect cell apoptosis, mitochondrial membrane potential, mitochondrial ROS (MitoROS) levels, and other mitochondrial-related indicators RESULTS: The expression of SIRT3 in PCOS model was significantly decreased. Overexpression of SIRT3 could significantly improve ovarian morphology and serum sex hormone levels in DHT-induced PCOS mice and inhibit apoptosis both in vitro and in vivo. Overexpression of SIRT3 also could improve mitochondrial dysfunction in DHT-induced KGN cells via FOXO1/PGC-1α signaling pathway. And PGC-1α inhibitor SR-18292 reversed the protective effect of SIRT3 overexpression on apoptosis and mitochondrial function damage of DHT-induced KGN cells.

Conclusion: SIRT3 regulated FOXO1/PGC-1α signaling pathway to reduce mitochondrial dysfunction in PCOS, thereby improving PCOS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12020-022-03262-xDOI Listing

Publication Analysis

Top Keywords

foxo1/pgc-1α signaling
12
signaling pathway
12
sirt3
10
polycystic ovary
8
ovary syndrome
8
sirt3 pcos
8
sirt3 overexpressed
8
dht-induced pcos
8
pcos model
8
morphology serum
8

Similar Publications

Objective: Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment.

Methods: Osteosarcoma stem cells were isolated and induced for DOX resistance.

View Article and Find Full Text PDF

Breast cancer represents the primary cause of death of women under 65 in developed countries, due to the acquisition of multiple drug resistance mechanisms. The PI3K/AKT pathway is one of the major regulating mechanisms altered during the development of endocrine resistance and inhibition of steps in this signalling pathway are adopted as a key strategy to overcome this issue. ADP-ribosylation is a post-translational modification catalysed by PARP enzymes that regulates essential cellular processes, often altered in diseases.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure.

View Article and Find Full Text PDF

BE-43547A exerts hypoxia-selective inhibition on human pancreatic cancer cells through targeting eEF1A1 and disrupting its association with FoxO1.

Acta Pharmacol Sin

January 2025

State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.

Hypoxia is a key feature of the tumor microenvironment that leads to the failure of many chemotherapies and induces more aggressive and resistant cancer phenotypes. Up to date, there are very few compounds and treatments that can target hypoxia. BE-43547A from Streptomyces sp.

View Article and Find Full Text PDF

Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.

Cell Mol Biol Lett

January 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.

Subjects And Methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!