Density Matrix Implementation of the Fermi-Löwdin Orbital Self-Interaction Correction Method.

J Phys Chem A

Department of Physics, Central Michigan University, Mount Pleasant, Michigan48859, United States.

Published: January 2023

The Fermi-Löwdin orbital self-interaction correction (FLOSIC) method effectively provides a transformation from canonical orbitals to localized Fermi-Löwdin orbitals which are used to remove the self-interaction error in the Perdew-Zunger (PZ) framework. This transformation is solely determined by a set of points in space, called Fermi-Löwdin descriptors (FODs), and the occupied canonical orbitals or the density matrix. In this work, we provide a detailed workflow for the implementation of the FLOSIC method for removal of self-interaction error in DFT calculations in an orbital-by-orbital basis that takes advantage of the unitary invariant nature of the FLOSIC method. In this way, it is possible to cast the self-consistent energy minimization at fixed FODs in the same manner than standard Kohn-Sham with one additional term in the Kohn-Sham Hamiltonian that introduces the PZ self-interaction correction. Each energy minimization iteration is divided in two substeps, one for the density matrix and one for the FODs. Expressions for the effective Kohn-Sham matrix and FOD gradients are provided such that its implementation is suitable for most electronic structure codes. We analyze the convergence characteristics of the algorithm and present applications for the evaluation of NMR shielding constants and real-time time-dependent DFT simulations based on the Liouville-von Neumann equation to calculate excitation energies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c07646DOI Listing

Publication Analysis

Top Keywords

density matrix
12
self-interaction correction
12
flosic method
12
fermi-löwdin orbital
8
orbital self-interaction
8
canonical orbitals
8
self-interaction error
8
energy minimization
8
self-interaction
5
matrix implementation
4

Similar Publications

LLC resonant converters have emerged as essential components in DC charging station modules, thanks to their outstanding performance attributes such as high power density, efficiency, and compact size. The stability of these converters is crucial for vehicle endurance and passenger experience, making reliability a top priority. However, malfunctions in the switching transistor or current sensor can hinder the converter's ability to maintain a resonant state and stable output voltage, leading to a notable reduction in system efficiency and output capability.

View Article and Find Full Text PDF

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated.

View Article and Find Full Text PDF

In this study, comparative analysis of calculated and experimental C NMR shifts for a wide range of model platinum complexes showed that, on the whole, the theory reproduces the experimental data well. The chemical shifts of carbon atoms directly bonded to Pt can be calculated well only within the framework of the fully relativistic matrix Dirac-Kohn-Sham (mDKS) level ( = 0.9973, = 3.

View Article and Find Full Text PDF

Durability of Wood-Cement Composites with Modified Composition by Limestone and Stabilised Spruce Chips.

Materials (Basel)

December 2024

Institute of Technology of Building Materials and Components, Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, Czech Republic.

Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood-cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement (CE) was replaced by 10% of LS, and spruce chips by 7% of SCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!