Unlabelled: Cav. is a fast-growing plywood species gaining popularity due to high economic returns. This study aimed to assemble and annotate the chloroplast (cp) genome of and compare it with previously published cp genomes within the Meliaceae family. The chloroplast genome was constructed by the de novo and reference-based assembly of paired-end reads generated by long-read sequencing of genomic DNA. The cp genome, sized 171,956 bp, comprised a typical angiosperm quadripartite structure. The large single-copy (LSC) region of 76,055 bp and a small single-copy (SSC) region of 18,693 bp cover 55% of the genome. The pair of inverted repeats (IRA and IRB) were 38,604 bp each (covering 45% of the genome). We identified unique genes (112), including protein-coding genes (79), tRNA (29) and 4 rRNA genes. Phylogenetic analysis using complete cp genomes of 11 species from Meliaceae revealed that and shared a sister clade. Comparative analysis using cp genome of and revealed a high sequence similarity (> 70%). Five intergenic regions were highly conserved among the three cp genomes. The gene trnG-UCC at LSC region was found to be more divergent in and , while it shows complete conservation within and This is the first report of the chloroplast genome in . The available levels of taxonomic expertise and clarity in species delineation within the Melia genus are low. The information generated provides scope for identifying new barcodes which increases the discriminatory power of the species within the genus beyond morphological identification.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03447-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805483PMC
http://dx.doi.org/10.1007/s13205-022-03447-1DOI Listing

Publication Analysis

Top Keywords

chloroplast genome
16
phylogenetic analysis
8
lsc region
8
genome
7
species
5
chloroplast
4
genome skimming
4
skimming potential
4
potential agroforestry
4
agroforestry species
4

Similar Publications

Complete chloroplast genome data reveal the existence of the L. complex and its potential introduction pathways into China.

Front Plant Sci

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China.

, native to North America, is an invasive species in many areas of the world, where it causes serious damage to natural ecosystems and economic losses. However, a dearth of genetic resources and molecular markers has hampered our understanding of its invasion history. Here, we assembled 40 complete chloroplast genomes of species, including 21 individuals, 15 individuals, and four individuals, the sizes of which ranged from 152,412 bp to 153,170 bp.

View Article and Find Full Text PDF

Background: Tea-oil Camellia within the genus Camellia is renowned for its premium Camellia oil, often described as "Oriental olive oil". So far, only one partial mitochondrial genomes of Tea-oil Camellia have been published (no main Tea-oil Camellia cultivars), and comparative mitochondrial genomic studies of Camellia remain limited.

Results: In this study, we first reconstructed the entire mitochondrial genome of C.

View Article and Find Full Text PDF

The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.

View Article and Find Full Text PDF

The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.

View Article and Find Full Text PDF

Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!