AI Article Synopsis

  • Tigecycline is a type of antibiotic that can fight off certain hard-to-treat bacteria known as carbapenem-resistant Gram-negative bacteria (CR-GNB), often causing pneumonia in hospitalized patients.
  • A study looked at ICU patients with pneumonia from CR-GNB to see if adding tigecycline to their treatment would help them recover better.
  • Results showed that patients who got tigecycline had lower death rates and a better chance of getting better compared to those who didn't, especially after 28 days of treatment.

Article Abstract

Background: Tigecycline has in vitro bacteriostatic activity against a broad spectrum of bacteria, including carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the role of tigecycline in treatment of nosocomial pneumonia caused by CR-GNB remains controversial and clinical evidences are limited. We aimed to investigate the clinical benefits of tigecycline as part of the combination treatment of nosocomial CR-GNB pneumonia in intensive care unit (ICU).

Methods: This multi-centre cohort study retrospectively enrolled ICU-admitted patients with nosocomial pneumonia caused by CR-GNB. Patients were categorized based on whether add-on tigecycline was used in combination with at least one anti-CR-GNB antibiotic. Clinical outcomes and all-cause mortality between patients with and without tigecycline were compared in the original and propensity score (PS)-matched cohorts. A subgroup analysis was also performed to explore the differences of clinical efficacies of add-on tigecycline treatment when combined with various anti-CR-GNB agents.

Results: We analysed 395 patients with CR-GNB nosocomial pneumonia, of whom 148 received tigecycline and 247 did not. More than 80% of the enrolled patients were infected by CR-Acinetobacter baumannii (CRAB). A trend of lower all-cause mortality on day 28 was noted in tigecycline group in the original cohort (27.7% vs. 36.0%, p = 0.088). In PS-matched cohort (102 patient pairs), patients with tigecycline had significantly lower clinical failure (46.1% vs. 62.7%, p = 0.017) and mortality rates (28.4% vs. 52.9%, p < 0.001) on day 28. In multivariate analysis, tigecycline treatment was a protective factor against clinical failure (PS-matched cohort: aOR 0.52, 95% CI 0.28-0.95) and all-cause mortality (original cohort: aHR 0.69, 95% CI 0.47-0.99; PS-matched cohort: aHR 0.47, 95% CI 0.30-0.74) at 28 days. Kaplan-Meier survival analysis in subgroups of patients suggested significant clinical benefits of tigecycline when added to a colistin-included (log rank p value 0.005) and carbapenem-included (log rank p value 0.007) combination regimen.

Conclusions: In this retrospective observational study that included ICU-admitted patients with nosocomial pneumonia caused by tigecycline-susceptible CR-GNB, mostly CRAB, tigecycline as part of a combination treatment regimen was associated with lower clinical failure and all-cause mortality rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808925PMC
http://dx.doi.org/10.1186/s40560-022-00647-yDOI Listing

Publication Analysis

Top Keywords

nosocomial pneumonia
16
tigecycline combination
12
pneumonia caused
12
caused cr-gnb
12
tigecycline
10
intensive care
8
tigecycline treatment
8
treatment nosocomial
8
add-on tigecycline
8
all-cause mortality
8

Similar Publications

Background: Nosocomial pneumonia is a significant healthcare challenge, particularly in the face of rising antimicrobial resistance among Gram-negative bacteria. The production of extended spectrum beta-lactamase (ESBL) exacerbates treatment complexities.

Aim: This study investigates the prevalence and resistance patterns of ESBL-producing and non-ESBL Gram-negative bacteria in nosocomial pneumonia cases in Georgian hospitals to inform antibiotic stewardship and treatment strategies.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen belonging to the γ-proteobacteria family, known to cause pneumonia linked with ventilator use and nosocomial infections. With the increasing prevalence of antibiotic-resistant bacteria, there is a pressing need to identify alternatives to conventional antibiotics. Plant-derived substances (PDSs) offer potential not only as antibacterial agents but also as modulators of antibiotic resistance.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Safety of steroids in severe community-acquired pneumonia.

Eur Respir Rev

January 2025

Hospital Clínic, Cellex Laboratory, CIBERES (Center for Networked Biomedical Research Respiratory Diseases, 06/06/0028), FCRB-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), School of Medicine, University of Barcelona, Barcelona, Spain

The systemic use of corticosteroids for patients with severe community-acquired pneumonia (sCAP) remains controversial in clinical practice, particularly in terms of the safety profile of these drugs. This narrative review aims to analyse the available literature data concerning the safety of short-term steroid use in the treatment of sCAP, while also highlighting potential future research directions. Several trials and meta-analyses have evaluated corticosteroid therapy as an adjuvant treatment for sCAP, yielding heterogeneous results regarding its efficacy and safety.

View Article and Find Full Text PDF

Introduction: Infection control in intensive care units (ICUs) is crucial due to the high risk of healthcare-associated infections (HAIs), which can increase patient morbidity, mortality, and costs. Effective measures such as hand hygiene, use of personal protective equipment (PPE), patient isolation, and environmental cleaning are vital to minimize these risks. The integration of artificial intelligence (AI) offers new opportunities to enhance infection control, from predicting outbreaks to optimizing antimicrobial use, ultimately improving patient safety and care in ICUs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!