Study of the hippocampal place cell system has greatly enhanced our understanding of memory encoding for distinct places, but how episodic memories for distinct experiences occurring within familiar environments are encoded is less clear. We developed a spatial decision-making task in which male rats learned to navigate a multiarm maze to a goal location for food reward while avoiding maze arms in which aversive stimuli were delivered. Task learning induced partial remapping in CA1 place cells, allowing us to identify both remapping and stable cell populations. Remapping cells were recruited into sharp-wave ripples and associated replay events to a greater extent than stable cells, despite having similar firing rates during navigation of the maze. Our results suggest that recruitment into replay events may be a mechanism to incorporate new contextual information into a previously formed and stabilized spatial representation. Hippocampal place cells provide a map of space that animals use to navigate. This map can change to reflect changes in the physical properties of the environment in which the animal finds itself, and also in response to nonphysical contextual changes, such as changes in the valence of specific locations within that environment. We show here that cells which change their spatial tuning after a change in context are preferentially recruited into sharp-wave ripple-associated replay events compared with stable nonremapping cells. Thus, our data lend strong support to the hypothesis that replay is a mechanism for the storage of new spatial maps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039748 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1450-22.2022 | DOI Listing |
Biomed Opt Express
January 2025
Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland.
A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Institute of Cancer Research, London, UK.
Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Pathogens and Host Immunity, UMR 5294 CNRS, UA15 INSERM, Université de Montpellier, Montpellier, 34095, France.
Programmed-cell death is an antimicrobial defense mechanism that promotes clearance of intracellular pathogens. Toxoplasma counteracts host immune defenses by secreting effector proteins into host cells; however, how the parasite evades lytic cell death and the effectors involved remain poorly characterized. We identified ROP55, a rhoptry protein that promotes parasite survival by preventing lytic cell death in absence of IFN-γ stimulation.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
The Drosophila visual system is a powerful model to study the development of neural circuits. Lobula columnar neurons-LCNs are visual output neurons that encode visual features relevant to natural behavior. There are ~20 classes of LCNs forming non-overlapping synaptic optic glomeruli in the brain.
View Article and Find Full Text PDFImmunity
January 2025
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:
Ischemic stroke and vascular cognitive impairment, caused by a sudden arterial occlusion or more subtle but protracted vascular insufficiency, respectively, are leading causes of morbidity and mortality worldwide with limited therapeutic options. Innate and adaptive immunity have long been implicated in neurovascular injury, but recent advances in methodology and new experimental approaches have shed new light on their contributions. A previously unappreciated dynamic interplay of brain-resident, meningeal, and systemic immune cells with the ischemic brain and its vasculature has emerged, and new insights into the frequent overlap between vascular and Alzheimer pathology have been provided.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!