SAP97 is a member of the MAGUK family of proteins, but unlike other MAGUK proteins that are selectively expressed in the CNS, SAP97 is also expressed in peripheral organs, like the heart and kidneys. SAP97 has several protein binding cassettes, and this review will describe their involvement in creating SAP97-anchored multiprotein networks. SAP97-anchored networks localized at the inner leaflet of the cell membrane play a major role in trafficking and targeting of membrane G protein-coupled receptors (GPCR), channels, and structural proteins. SAP97 plays a major role in compartmentalizing voltage gated sodium and potassium channels to specific cellular compartments of heart cells. SAP97 undergoes extensive alternative splicing. These splice variants give rise to different SAP97 isoforms that alter its cellular localization, networking, signaling and trafficking effects. Regarding GPCR, SAP97 binds to the β-adrenergic receptor and recruits AKAP5/PKA and PDE4D8 to create a multiprotein complex that regulates trafficking and signaling of cardiac β-AR. In the kidneys, SAP97 anchored networks played a role in trafficking of aquaporin-2 water channels. Cardiac specific ablation of SAP97 (SAP97-cKO) resulted in cardiac hypertrophy and failure in aging mice. Similarly, instituting transverse aortic constriction (TAC) in young SAP97 c-KO mice exacerbated TAC-induced cardiac remodeling and dysfunction. These findings highlight a critical role for SAP97 in the pathophysiology of a number of cardiac and renal diseases, suggesting that SAP97 is a relevant target for drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2022.115406 | DOI Listing |
J Biochem Mol Toxicol
August 2024
Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China.
Sodium and potassium channels, especially Nav1.5 and Kir2.1, play key roles in the formation of action potentials in cardiomyocytes.
View Article and Find Full Text PDFPharmgenomics Pers Med
May 2024
Department of Neurology, Shanghai Children's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People's Republic of China.
Background: The IQ motif and Sec7 domain ArfGEF 2 (), an X-linked gene that encodes the BRAG1 protein, is a guanine nucleotide exchange factor for the ADP ribosylation factor (ARF) protein family in the small guanosine triphosphate (GTP) binding protein. Mutations in this gene result in disorders such as intellectual disability (ID) and epilepsy. In this study, we analyze the clinical features of two patients with -mutation-related disease and discuss their possible pathogenesis.
View Article and Find Full Text PDFNeurobiol Dis
May 2024
Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Neuroscience Research Institute, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China. Electronic address:
Eur J Neurosci
March 2024
Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy.
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory.
View Article and Find Full Text PDFFront Neurosci
January 2024
Department of Biochemistry, College of Medicine, Kuwait University, Jabriya, Kuwait.
Oxidative stress, induced by impaired insulin signaling in the brain contributes to cognitive loss in sporadic Alzheimer's disease (sAD). This study evaluated early hippocampal oxidative stress, pre- and post-synaptic proteins in intraperitoneal (IP) and intracerebroventricular (ICV) streptozotocin (STZ) models of impaired insulin signaling. Adult male Wistar rats were injected with STZ, IP, or ICV, and sacrificed 1-, 3-, or 6-weeks post injection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!