Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lack of solution processability is the main bottleneck in research progression and commercialization of conducting polymers. The current strategy of employing a water-soluble dopant (such as PEDOT:PSS) is not feasible with organic solvents, thus limiting compatibility on hydrophobic surfaces, such as three-dimensional (3D) printable thermoplastics. In this article, we utilize a colloidal dispersion of PEDOT particles to overcome this limitation and formulate an organic paint demonstrating conformal coating on 3D-printed objects. We start with synthesizing PEDOT particles that possess a low electrical resistance (gap resistance of 4.2 ± 0.5 Ω/mm). A particle-based organic paint is formulated and applied via brush painting. Coated objects show a surface resistance of 1 kΩ/cm, comparable to an object printed by commercial conductive filaments. The coating enables the fabrication of pH and strain sensors. Highly conductive PEDOT particles also absorb light strongly, especially in the near-infrared (NIR) range due to the high concentration of charge carriers on the polymer's conjugated backbones (i.e., polarons and bipolarons). PEDOT converts light to heat efficiently, resulting in a superior photothermal activity that is demonstrated by the flash ignition of a particle-impregnated cotton ball. Consequently, painted 3D prints are highly effective in converting NIR light to heat, and a 5 s exposure to a NIR laser (808 nm, 0.8 mW/cm) leads to a record high-temperature increase (194.5 °C) among PEDOT-based coatings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c18328 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!