Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, pulse (pea, lentil) and cereal (barley, oats) seeds were firstly milled into whole flours, which were then sieved into coarse and fine flours. The particle sizes of the three generated flour streams followed a descending order of coarse > whole > fine, consistent with the observation under scanning electron microscopy (SEM). Among the four crops, the three flour streams showed the same rank order of fine > whole > coarse in starch and damaged-starch contents but the opposite order in ash and total dietary fiber contents. Thus, those functional properties closely related to starch occurring in flour, such as L* (brightness), starch gelatinization enthalpy change (ΔH), and gel hardness, followed the same order of fine > whole > coarse. By contrast, protein contents of the three flour streams did not vary in pea and lentil but showed a trend of coarse > whole > fine in barley and oats, which could partially explain generally comparable foaming and emulsifying properties of the three streams of pulse flours as well as an order of coarse > whole > fine in oil-binding capacity (OBC) of cereal flours, respectively. The different particle sizes and chemical compositions of the three flour streams only resulted in a descending order of fine > whole > coarse in the pasting viscosities of the pulse flours but did not lead to such a clear trend in the cereal flours, which could be partly attributable to the different microscopic structures of the pulse and cereal seeds and their corresponding flours. This research clearly demonstrated that particle size, chemical composition, and microscopic structure were important variables determining the specific techno-functional properties of pulse and cereal flours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.112223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!