A one-pot protocol for iron-catalyzed decarbonylative borylation of aryl and alkyl carboxylic acids.

STAR Protoc

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China. Electronic address:

Published: December 2022

We present a protocol for the eco-friendly synthesis of aryl and alkyl boronic esters from aryl and alkyl carboxylic acids. We describe steps for aryl and alkyl carboxylates preparation. We further detail procedures for the synthesis of borylated products using aryl and alkyl carboxylates through iron-catalyzed decarbonylation at 100°C-130°C, followed by purification of the crude products by flash column chromatography. For complete details on the use and execution of this protocol, please refer to Wen et al. (2022)..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763756PMC
http://dx.doi.org/10.1016/j.xpro.2022.101909DOI Listing

Publication Analysis

Top Keywords

aryl alkyl
20
alkyl carboxylic
8
carboxylic acids
8
alkyl carboxylates
8
aryl
5
alkyl
5
one-pot protocol
4
protocol iron-catalyzed
4
iron-catalyzed decarbonylative
4
decarbonylative borylation
4

Similar Publications

Photoredox-Enabled Direct and Three-Component Difluoroalkylative Modification of -Aryl Glycinates.

Org Lett

January 2025

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.

A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into -aryl glycine derivatives has been established. Using a bench-stable [PhPCFH]Br salt, the -CFH group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF unit.

View Article and Find Full Text PDF

Herein we report a cobalt-catalyzed hydroglycosylation of terminal alkynes, employing bench-stable ortho-iodobiphenyl (oIB) substituted sulfides as glycosyl donors. This reaction occurs with high stereo- and regioselectivity to afford E-configured vinyl α-C-glycosides, a class of compounds nontrivial to access by previous methods. The use of a bis(oxazoline) ligand with bulky side chains is critical for the high selectivities observed.

View Article and Find Full Text PDF

Taming highly enolizable aldehydes for catalytic asymmetric C-C coupling with nucleophiles remains an elusive challenge compared to widely explored simple alkyl or aryl aldehydes. Herein, we use ThDP-dependent enzymes to realize the direct C-C coupling of highly enolizable 2-phosphonate aldehydes with in situ-generated dynamically reversible nucleophiles (acyl anions). Unlike NHC-mediated reactions that yield complex mixtures of multiple adducts, our enzymatic process selectively produces biologically active β-hydroxy phosphonates with high yields (up to 95%) and excellent enantioselectivities (up to 99% ee).

View Article and Find Full Text PDF

Secondary Alkylation of Arenes via the Borono-Catellani Strategy.

J Am Chem Soc

January 2025

Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.

A modular platform technology for the synthesis of α-aryl carbonyl derivatives via Borono-Catellani-type secondary alkylation of arenes is presented. This practical method features a broad substrate scope regarding aryl boronic acid catechol esters, secondary alkyl bromides, and diversified terminating reagents (e.g.

View Article and Find Full Text PDF

Facile Access to Quaternary Carbon Centers via Ni-Catalyzed Arylation of Alkenes with Organoborons.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

Quaternary carbon centers are widespread structural motifs, thus representing extensive interest in organic synthesis. We describe here an efficient nickel-catalyzed intermolecular, -selective arylation of minimally functionalized alkenes with stable organoborons, affording a broad range of cyclic or acyclic quaternary carbon centers under mild conditions. The utilization of the diimine ligand is critical for high reactivity and chemoselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!