In the past ten years, the application of artificial intelligence (AI) in biomedicine has increased rapidly, which roots in the rapid growth of biomedicine data, the improvement of computing performance, and the development of deep learning methods. At present, there are great difficulties in front of AI for solving complex and comprehensive medical problems. Ontology can play an important role in how to make machines have stronger intelligence and has wider applications in the medical field. By using ontologies, (meta) data can be standardized so that data quality is improved and more data analysis methods can be introduced, data integration can be supported by the semantics relationships which are specified in ontologies, and effective logic expression in nature language can be better understood by machine. This can be a pathway to stronger AI. Under this circumstance, the Chinese Conference on Biomedical Ontology and Terminology was held in Beijing in autumn 2019, with the theme "Making Machine Understand Data". The success of this conference further improves the development of ontology in the field of biomedical information in China, and will promote the integration of Chinese ontology research and application with the international standards and the findability, accessibility, interoperability, and reusability(FAIR) Data Principle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24920/003701 | DOI Listing |
J Chem Inf Model
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India.
Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Division of Cardiothoracic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China.
Background And Objective: Patients with thoracic aortic aneurysm and dissection (TAAD) are often asymptomatic but present acutely with life threatening complications that necessitate emergency intervention. Aortic diameter measurement using computed tomography (CT) is considered the gold standard for diagnosis, surgical planning, and monitoring. However, manual measurement can create challenges in clinical workflows due to its time-consuming, labour-intensive nature and susceptibility to human error.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Division of Advanced Gastrointestinal and Bariatric Surgery, Mayo Clinic, Jacksonville, FL, USA.
Background: Addressing language barriers through accurate interpretation is crucial for providing quality care and establishing trust. While the ability of artificial intelligence (AI) to translate medical documentation has been studied, its role for patient-provider communication is less explored. This review evaluates AI's effectiveness in clinical translation by assessing accuracy, usability, satisfaction, and feedback on its use.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!