. Imaging the human brain vasculature with high spatial and temporal resolution remains challenging in the clinic today. Transcranial ultrasound is still scarcely used for cerebrovascular imaging, due to low sensitivity and strong phase aberrations induced by the skull bone that only enable the proximal part major brain vessel imaging, even with ultrasound contrast agent injection (microbubbles).. Here, we propose an adaptive aberration correction technique for skull bone aberrations based on the backscattered signals coming from intravenously injected microbubbles. Our aberration correction technique was implemented to image brain vasculature in human adults through temporal and occipital bone windows. For each subject, an effective speed of sound, as well as a phase aberration profile, were determined in several isoplanatic patches spread across the image. This information was then used in the beamforming process.. This aberration correction method reduced the number of artefacts, such as ghost vessels, in the images. It improved image quality both for ultrafast Doppler imaging and ultrasound localization microscopy (ULM), especially in patients with thick bone windows. For ultrafast Doppler images, the contrast was increased by 4 dB on average, and for ULM, the number of detected microbubble tracks was increased by 38%.. This technique is thus promising for better diagnosis and follow-up of brain pathologies such as aneurysms, arterial stenoses, arterial occlusions, microvascular disease and stroke and could make transcranial ultrasound imaging possible even in particularly difficult-to-image human adults.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/acabfbDOI Listing

Publication Analysis

Top Keywords

transcranial ultrasound
12
aberration correction
12
ultrasound imaging
8
imaging human
8
brain vasculature
8
skull bone
8
imaging ultrasound
8
correction technique
8
human adults
8
bone windows
8

Similar Publications

Does age, sex, and area of substantia nigra echogenicity predict the MRI appearance of nigrosome-1?

J Neurol Sci

January 2025

UniSA Clinical & Health Sciences and Alliance for Research in Exercise, Nutrition and Activity (ARENA), City East Campus, University of South Australia, GPO Box 2471, Adelaide, South Australia 5001, Australia. Electronic address:

The appearance of the substantia nigra (SN) can aid diagnosis of Parkinson's disease (PD). The effect of age and sex on the appearance of nigrosome-1 (SN subregion) on magnetic resonance imaging (MRI), and the relationship between nigrosome-1 (viewed with MRI) and SN echogenicity (viewed with transcranial ultrasound) is unknown. The study aimed to address these knowledge gaps.

View Article and Find Full Text PDF

Background: High variability of intracranial arterial blood flow velocities by Transcranial color-coded sonography (TCCS) has been found in clinical practice. This study aimed to improve diagnostic accuracy by analyzing influencing factors of middle cerebral artery (MCA) blood flow velocity detected by TCCS.

Methods: In total, 328 MCA vessels were classified as normal (27.

View Article and Find Full Text PDF

The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD).

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.

Background: Mild Cognitive Impairment (MCI) is often a precursor to Alzheimer's dementia (AD). Recent research underscores the relationship between mitochondrial dysfunction and amyloid-beta accumulation, raising the prospect of targeting mitochondrial function for intervention. Transcranial photobiomodulation (tPBM), a non-invasive technique utilizing near-infrared light, has been shown to enhance mitochondrial function.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.

Background: Mild Cognitive Impairment (MCI) serves as a precursor to Alzheimer's dementia (AD). Recent research underscores the relationship between mitochondrial dysfunction and amyloid beta accumulation, underscoring the prospect of targeting mitochondrial function for intervention. Consequently, our study aimed to explore the efficacy of transcranial photobiomodulation (tPBM), a novel non-invasive technique utilizing near-infrared light to activate mitochondrial cytochrome C oxidase receptors, thereby enhancing cellular energy in individuals with MCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!