Are We There Yet? Intracellular Sensing with Luminescent Nanoparticles and FRET.

Anal Chem

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

Published: January 2023

Combinations of luminescent nanoparticles (LNPs) and Förster resonance energy transfer (FRET) offer properties and features that are advantageous for sensing of biomolecular targets and activity. Despite a multitude of designs for LNP-FRET sensors, intracellular sensing applications are underdeveloped. We introduce readers to this field, summarize essential concepts, meta-analyze the literature, and offer a perspective on the bottleneck in LNP-FRET sensor development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c03751DOI Listing

Publication Analysis

Top Keywords

intracellular sensing
8
luminescent nanoparticles
8
yet? intracellular
4
sensing luminescent
4
nanoparticles fret
4
fret combinations
4
combinations luminescent
4
nanoparticles lnps
4
lnps förster
4
förster resonance
4

Similar Publications

The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense.

Cell Host Microbe

December 2024

CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China. Electronic address:

Plant stomata open in response to blue light, allowing gas exchange and water transpiration. However, open stomata are potential entry points for pathogens. Whether plants can sense pathogens and mount defense responses upon stomatal opening and how blue-light cues are integrated to balance growth-defense trade-offs are poorly characterized.

View Article and Find Full Text PDF

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

BODIPY-Based Ratiometric Fluorescent Probe for Sensing Peroxynitrite in Inflammatory Cells and Tissues.

Biosensors (Basel)

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.

Peroxynitrite (ONOO) plays an important role in many physiological and pathological processes. Excessive ONOO in cells leads to oxidative stress and inflammation. However, precise monitoring of ONOO levels in specific organelles (e.

View Article and Find Full Text PDF

PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A.

Nucleic Acids Res

December 2024

CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China.

Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation.

View Article and Find Full Text PDF

Light-Inducible Deformation of Mitochondria in Live Cells.

Methods Mol Biol

December 2024

Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Mitochondria are dynamic organelles with constantly changing morphologies. Despite recent reports indicating that mechanical cues modulate mitochondrial morphologies and functions, there is a lack of methods that can exclusively and precisely exert mechanical forces to and deform mitochondria in live cells. Therefore, how mitochondria sense and respond to mechanical forces remains largely elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!