Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/acaa7c | DOI Listing |
bioRxiv
January 2025
Ben-May Institute for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ~55 kDa N- and C- domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.
View Article and Find Full Text PDFNeural Netw
March 2025
Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Recurrent neural networks (RNNs) are an important class of models for learning sequential behavior. However, training RNNs to learn long-term dependencies is a tremendously difficult task, and this difficulty is widely attributed to the vanishing and exploding gradient (VEG) problem. Since it was first characterized 30 years ago, the belief that if VEG occurs during optimization then RNNs learn long-term dependencies poorly has become a central tenet in the RNN literature and has been steadily cited as motivation for a wide variety of research advancements.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Science, China Agricultural University, Beijing 100193, China.
Sci Rep
November 2024
Department of Chemistry, Mississippi State University, Starkville, MS, 39759, USA.
Voltage-gated sodium channels (Na) are complex macromolecular proteins that are responsible for the initial upstroke of an action potential in excitable cells. Appropriate function is necessary for many physiological processes such as heartbeat, voluntary muscle contraction, nerve conduction, and neurological function. Dysfunction can have life-threatening consequences.
View Article and Find Full Text PDFBiophys J
December 2024
BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. Electronic address:
Protonation of key residues in the diphtheria toxin translocation (T)-domain triggered by endosomal acidification is critical for inducing a series of conformational transitions critical for the cellular entry of the toxin. Previous experiments revealed the importance of histidine residues in modulating pH-dependent transitions. They suggested the presence of a "safety latch" preventing premature refolding of the T-domain by a yet poorly understood mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!