Electrodeposition of dopamine onto carbon fiber microelectrodes to enhance the detection of Cu via fast-scan cyclic voltammetry.

Anal Bioanal Chem

Department of Biomedical & Chemical Engineering & Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32901, USA.

Published: July 2023

The etiology of neurodegenerative diseases is poorly understood; however, studies have shown that heavy metals, such as copper, play a critical role in neurotoxicity, thus, adversely affecting the development of these diseases. Because of the limitations associated with classical metal detection tools to obtain accurate speciation information of ultra-low concentrations of heavy metals in the brain, analysis is primarily performed in blood, urine, or postmortem tissues, limiting the translatability of acquired knowledge to living systems. Inadequate and less accurate data obtained with such techniques provide little or no information for developing efficient therapeutics that aid in slowing down the deterioration of brain cells. In this study, we developed a biocompatible, ultra-fast, low-cost, and robust surface-modified electrode with carbon fibers by electrodepositing dopamine via fast-scan cyclic voltammetry (FSCV) to detect Cu in modified tris buffer. We studied the surface morphology of our newly introduced sensors using high-resolution images by atomic force microscopy under different deposition conditions. The limit of detection (LOD) of our surface-modified sensor was 0.01 µM (0.64 ppb), and the sensitivity was 11.28 nA/µM. The LOD and sensitivity are fifty and two times greater, respectively, compared to those of a bare electrode. The sensor's response is not affected by the presence of dopamine in the matrix. It also exhibited excellent stability to multiple subsequent injections and repeated measurements of Cu over a month, thus showing its strength to be developed into an accurate, fast, robust electrochemical tool to monitor ultra-low concentrations of heavy metals in the brain in real time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-022-04488-4DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
fast-scan cyclic
8
cyclic voltammetry
8
ultra-low concentrations
8
concentrations heavy
8
metals brain
8
electrodeposition dopamine
4
dopamine carbon
4
carbon fiber
4
fiber microelectrodes
4

Similar Publications

The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed.

View Article and Find Full Text PDF

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Exploring the efficacy of fluorouracil and platinum based chemotherapy in advanced hepatocellular carcinoma to bridge the treatment gap in resource limited settings.

Sci Rep

January 2025

Division of Medical Oncology, Department of Internal Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, 16247, Korea.

Advanced hepatocellular carcinoma (HCC) poses treatment challenges, especially where access to multi-kinase inhibitors and ICIs is limited by high costs and lack of insurance. This study evaluates the effectiveness of 5-fluorouracil (5-FU) plus platinum-based chemotherapy as an alternative systemic treatment for advanced HCC. A retrospective analysis of advanced HCC patients treated with 5-FU plus platinum-based chemotherapy was conducted.

View Article and Find Full Text PDF

Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!