A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding Clinical Progression of Late-Life Depression to Alzheimer's Disease Over 5 Years with Structural MRI. | LitMetric

Previous studies have shown that late-life depression (LLD) may be a precursor of neurodegenerative diseases and may increase the risk of dementia. At present, the pathological relationship between LLD and dementia, in particularly Alzheimer's disease (AD) is unclear. Structural MRI (sMRI) can provide objective biomarkers for the computer-aided diagnosis of LLD and AD, providing a promising solution to understand the clinical progression of brain disorders. But few studies have focused on sMRI-based predictive analysis of clinical progression from LLD to AD. In this paper, we develop a deep learning method to predict the clinical progression of LLD to AD up to 5 years after baseline time using T1-weighted structural MRIs. We also analyze several important factors that limit the diagnostic performance of learning-based methods, including data imbalance, small-sample-size, and multi-site data heterogeneity, by leveraging a relatively large-scale database to aid model training. Experimental results on 308 subjects with sMRIs acquired from 2 imaging sites and the publicly available ADNI database demonstrate the potential of deep learning in predicting the clinical progression of LLD to AD. To the best of our knowledge, this is among the first attempts to explore the complex pathophysiological relationship between LLD and AD based on structural MRI using a deep learning method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805302PMC
http://dx.doi.org/10.1007/978-3-031-21014-3_27DOI Listing

Publication Analysis

Top Keywords

clinical progression
20
structural mri
12
progression lld
12
deep learning
12
late-life depression
8
alzheimer's disease
8
relationship lld
8
learning method
8
lld
7
progression
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!