The front cover artwork is provided by Prof. Rainer Glaser's group at the Missouri University of Science and Technology. The image shows one of four potential energy surfaces generated from our rotation-inversion study of tertiary carbamates and highlights two of the eight possible transition state pathways between two ensembles of E- and Z-minima. In the context of synthetic studies of fluorinated carbamates R O-CO-N(R )CH CF , we unexpectedly observed two sets of  C NMR quartets for the CF  group and we needed to understand their origin. Read the full text of the Research Article at 10.1002/cphc.2022005442.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202200893DOI Listing

Publication Analysis

Top Keywords

tertiary carbamates
8
potential energy
8
rotation-inversion isomerization
4
isomerization tertiary
4
carbamates potential
4
energy surface
4
surface analysis
4
analysis multi-paths
4
multi-paths isomerization
4
isomerization boltzmann
4

Similar Publications

A Comparison of Peripherally Inserted Central Catheter Materials.

N Engl J Med

January 2025

From the University of Queensland, Brisbane, QLD, Australia (A.J.U., D.A., T.M.K., N.M., N.R., P.L.-A., V.G., A.C., P.M., C.M.R., P.N.A.H.); Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia (A.J.U., T.M.K., P.L.-A., V.G.); Griffith University, Brisbane, QLD, Australia (A.J.U., D.A., T.M.K., R.M.W., N.M., A.C.B., R.R., J.B., V.C., C.M.R., R.S.W.); Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia (A.J.U., T.M.K., N.M., K.S., A.C., P.N.A.H.); Princess Alexandra Hospital, Brisbane, QLD, Australia (R.M.W., B.P., N.R., J.L., C.B., P.M.); University of Colorado, Denver (V.C.); and Metro North Health, Brisbane, QLD, Australia (C.M.R.).

Background: New catheter materials for peripherally inserted central catheters (PICCs) may reduce the risk of device failure due to infectious, thrombotic, and catheter occlusion events. However, data from randomized trials comparing these catheters are lacking.

Methods: We conducted a randomized, controlled, superiority trial in three Australian tertiary hospitals.

View Article and Find Full Text PDF

Background And Objective: Cenobamate is a novel anti-seizure medication (ASM) with unusually high responder rates even in patients with refractory epilepsy. Due to its enzyme-inducing properties, cenobamate could negatively affect bone metabolism, similar to other ASMs; however, effects of long-term cenobamate treatment on bone health have not yet been investigated. The aim of this longitudinal observational study was to assess the effects of 1 year of continuous, adjunctive cenobamate treatment on bone health in patients with drug-resistant, focal epilepsy.

View Article and Find Full Text PDF

Introduction: Dementia is one of the leading causes of disability among older people aged 60 years and above, with majority eventually being diagnosed with Alzheimer's disease (AD). Pharmacological agents approved for dementia include acetylcholinesterase enzyme (AChE) inhibitors like rivastigmine, donepezil and galantamine and the N-methyl-D-aspartate (NMDA) receptor antagonist memantine, prescribed as monotherapy or in combination with each other, depending on the severity of disease. There is currently no available study demonstrating the clinical response to these drugs for AD in the Filipino population.

View Article and Find Full Text PDF

The structure-tissue exposure/selectivity relationship (STR) aids in lead optimization to improve drug candidate selection and balance clinical dose, efficacy, and toxicity. In this work, butyrocholinesterase (BuChE)-targeted cannabidiol (CBD) carbamates were used to study the STR in correlation with observed efficacy/toxicity. CBD carbamates with similar structures and same molecular target showed similar/different pharmacokinetics.

View Article and Find Full Text PDF
Article Synopsis
  • Direct electrochemical reduction of captured carbon dioxide (CO) species like carbamate and (bi)carbonate can potentially simplify CO capture by eliminating the energy-intensive stripping step.
  • The study focuses on atomically dispersed nickel (Ni) catalysts, which effectively convert CO into methane (CH) and showcases their unique activity using advanced techniques like X-ray photoelectron spectroscopy (XPS) and electron microscopy (EM).
  • Results indicate that carbamate is the key species for CH production, supported by various experimental techniques, and density functional theory (DFT) calculations reveal how single-atom Ni on gold (Au) efficiently reduces carbamate directly to produce hydrocarbons.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!