The diverse actions of cytoskeletal vimentin in bacterial infection and host defense.

J Cell Sci

Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.

Published: January 2023

Bacterial infection is a major threat to human health, with infections resulting in considerable mortality, urging the need for a more profound understanding of bacteria-host interactions. During infection of cells, host cytoskeletal networks constantly interact with bacteria and are integral to their uptake. Vimentin, an intermediate filament protein, is one such cytoskeletal component that interacts with bacteria during infection. Although vimentin is predominantly present in the cytoplasm, it also appears in a secreted form or at the surface of multiple cell types, including epithelial cells, endothelial cells, macrophages and fibroblasts. As a cytoplasmic protein, vimentin participates in bacterial transportation and the consequential immune-inflammatory responses. When expressed on the cell surface, vimentin can be both pro- and anti-bacterial, favoring bacterial invasion in some contexts, but also limiting bacterial survival in others. Vimentin is also secreted and located extracellularly, where it is primarily involved in bacterial-induced inflammation regulation. Reciprocally, bacteria can also manipulate the fate of vimentin in host cells. Given that vimentin is not only involved in bacterial infection, but also the associated life-threatening inflammation, the use of vimentin-targeted drugs might offer a synergistic advantage. In this Review, we recapitulate the abundant evidence on vimentin and its dynamic changes in bacterial infection and speculate on its potential as an anti-bacterial therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.260509DOI Listing

Publication Analysis

Top Keywords

bacterial infection
16
vimentin
9
bacterial
7
infection
6
diverse actions
4
actions cytoskeletal
4
cytoskeletal vimentin
4
vimentin bacterial
4
infection host
4
host defense
4

Similar Publications

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

Tuberculosis vaccines and therapeutic drug: challenges and future directions.

Mol Biomed

January 2025

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.

Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research.

View Article and Find Full Text PDF

Rapid detection assays for Bacillus anthracis, Yersinia pestis, and Brucella spp. via triplex-recombinase polymerase amplification.

Mol Biol Rep

January 2025

State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.

Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.

View Article and Find Full Text PDF

Clinical presentation and outcome of patients with endogenous endophthalmitis.

Int Ophthalmol

January 2025

Department of Ophthalmology, Basaksehir Cam and Sakura City Hospital, Başakşehir Olympic Boulevard Road, 34480, Başakşehir, Istanbul, Turkey.

Purpose: The study aims to evaluate the clinical characteristics, risk factors, microbiological findings, and visual outcomes, as well as patient and eye survival, of patients diagnosed with endogenous endophthalmitis (EE).

Methods: A retrospective study was conducted on 29 eyes from 21 patients diagnosed with EE.

Results: The mean age of presentation was 56.

View Article and Find Full Text PDF

Disseminated protothecosis in a dog coinfected with Hepatozoon canis and Ehrlichia canis.

Vet Res Commun

January 2025

Facultad de Ciencias Veterinarias. Cátedra de Enfermedades Infecciosas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.

Protothecosis is a severe, emerging opportunistic infection caused by the saprophytic, achlorophyllous microalgae of the genus Prototheca. Though uncommon, human and animal cases are increasing worldwide, making awareness of this fungal-like pathogen important in both human and veterinary medicine. We report a fatal case of disseminated protothecosis caused by P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!