Despite large research efforts in the fields of lithium ion and lithium metal batteries, there are still unanswered questions. One of them is the formation of the solid-electrolyte interphase (SEI) in lithium-metal-anode-based battery systems. Until now, a compound profile analysis of the SEI on lithium metal was challenging as the amounts of many compounds after simple contact of lithium metal and the electrolyte were too low for detection with analytical methods. This study presents a novel approach on unravelling the SEI compound profile through accumulation in the gas, liquid electrolyte, and solid phase. The method uses the intrinsic behavior of lithium metal to spontaneously react with the liquid electrolyte. In combination with complementary, state-of-the-art analytical instrumentation and methods, this approach provides qualitative and quantitative results on all three phases revealing the vast variety of compounds formed in carbonate-based electrolytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202201912 | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute for Electrochemical Energy Storage (CE-IEES), Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Sn-based electrodes are promising candidates for next-generation lithium-ion batteries. However, it suffers from deleterious micro-structural deformation as it undergoes drastic volume changes upon lithium insertion and extraction. Progress in designing these materials is limited to complex structures.
View Article and Find Full Text PDFChem Asian J
January 2025
University of Queensland, School of Chemical Engineering, AUSTRALIA.
The activation mechanism of Li-rich cathode has been discussed for many years, yet there is still debate on different theories. Potassium doping can assist the investigation on activation mechanism through its unique function in terms of blocking TM migration during activation. K-doping works by occupying Li sites even after Li has been extracted, increasing stability by blocking transition metals from migrating into these sites, which can help us distinguish the pathway of activation.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China.
Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Electromechanical and Information Engineering, PuTian University, Putian Fujian 351100, China.
As the anode material of LIBs, the SnS electrode boasts a reversible specific capacity as high as 1231 mA h g. Additionally, SnS possesses a CdI2-type layered structure with a layer spacing of 0.59 nm, which allows it to accommodate numerous lithium ions and facilitate rapid charge transfer.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, Hunan Normal University, Building of quantum, Hunan normal university, Changsha, Hunan, 410081, CHINA.
Scandium (Sc) can orderly occupy interstitial sites within the Ω phase of aluminum alloys, forming a new phase that significantly enhances the thermal stability of the alloy. However, Sc is relatively expensive and rare. In this work, we employ first-principles calculations to delve into the physical essence interstitial ordering of Sc in enhancing thermal stability at the electronic level, thereby revealing the crucial factors responsible for this improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!