A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-Particle Functionality Imaging of Antibody-Conjugated Nanoparticles in Complex Media. | LitMetric

Single-Particle Functionality Imaging of Antibody-Conjugated Nanoparticles in Complex Media.

ACS Appl Bio Mater

Department of Biomedical Engineering, Institute for Complex Molecular systems (ICMS), Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.

Published: January 2023

The properties of nanoparticles (NPs) can change upon contact with serum components, occluding the NP surface by forming a biomolecular corona. It is believed that targeted NPs can lose their functionality due to this biological coating, thus losing specificity and selectivity toward target cells and leading to poor therapeutic efficiency. A better understanding of how the biomolecular corona affects NP ligand functionality is needed to maintain NP targeting capabilities. However, techniques that can quantify the functionality of NPs at a single-particle level in a complex medium are limited and often laborious in sample preparation, measurement, and analysis. In this work, the influence of serum exposure on the functionality of antibody-functionalized NPs was quantified using a straightforward total internal reflection fluorescence (TIRF) microscopy method and evaluated in cell uptake studies. The single-particle resolution of TIRF reveals the interparticle functionality heterogeneity and the substantial differences between NPs conjugated with covalent and noncovalent methods. Notably, only NPs covalently conjugated with a relatively high amount of antibodies maintain their functionality to a certain extent and still showed cell specificity and selectivity toward high receptor density cells after incubation in full serum. The presented study emphasizes the importance of single-particle functional characterization of NPs in complex media, contributing to the understanding and design of targeted NPs that retain their cell specificity and selectivity in biologically relevant conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846673PMC
http://dx.doi.org/10.1021/acsabm.2c00830DOI Listing

Publication Analysis

Top Keywords

specificity selectivity
12
complex media
8
nps
8
biomolecular corona
8
targeted nps
8
cell specificity
8
functionality
6
single-particle
4
single-particle functionality
4
functionality imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!