Perovskite-sensitized triplet-triplet annihilation (TTA) upconversion (UC) holds potential for practical applications of solid-state UC ranging from photovoltaics to sensing and imaging technologies. As the triplet sensitizer, the underlying perovskite properties heavily influence the generation of spin-triplet states once interfaced with the organic annihilator molecule, typically polyacene derivatives. Presently, most reported perovskite TTA-UC systems have utilized rubrene doped with ∼1% dibenzotetraphenylperiflanthene (RubDBP) as the annihilator/emitter species. However, practical applications require a larger apparent anti-Stokes than is currently achievable with this system due to the inherent 0.4 eV energy loss during triplet generation. In this minireview, we present the current understanding of the triplet sensitization process at the perovskite/organic semiconductor interface and introduce additional promising annihilators based on anthracene derivatives into the discussion of future directions in perovskite-sensitized TTA-UC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr05767k | DOI Listing |
Nat Mater
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.
NPJ Quantum Mater
November 2024
Department of Physics, Maryland Quantum Materials Center, University of Maryland, College Park, MD USA.
Nat Commun
November 2024
Los Alamos National Laboratory, Los Alamos, NM, USA.
A spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that survives to temperatures well above the superconducting critical temperature, T. Whether the PDW is the mother or a subordinate order remains unsettled.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Physics, University of Wisconsin, Milwaukee, WI 53201.
The Stoner instability remains a cornerstone for understanding metallic ferromagnets. This instability captures the interplay of Coulomb repulsion, Pauli exclusion, and twofold fermionic spin degeneracy. In materials with spin-orbit coupling, this fermionic spin is generalized to a twofold degenerate pseudospin which is typically believed to have symmetry properties as spin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!