Generating spin-triplet states at the bulk perovskite/organic interface for photon upconversion.

Nanoscale

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.

Published: January 2023

Perovskite-sensitized triplet-triplet annihilation (TTA) upconversion (UC) holds potential for practical applications of solid-state UC ranging from photovoltaics to sensing and imaging technologies. As the triplet sensitizer, the underlying perovskite properties heavily influence the generation of spin-triplet states once interfaced with the organic annihilator molecule, typically polyacene derivatives. Presently, most reported perovskite TTA-UC systems have utilized rubrene doped with ∼1% dibenzotetraphenylperiflanthene (RubDBP) as the annihilator/emitter species. However, practical applications require a larger apparent anti-Stokes than is currently achievable with this system due to the inherent 0.4 eV energy loss during triplet generation. In this minireview, we present the current understanding of the triplet sensitization process at the perovskite/organic semiconductor interface and introduce additional promising annihilators based on anthracene derivatives into the discussion of future directions in perovskite-sensitized TTA-UC.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr05767kDOI Listing

Publication Analysis

Top Keywords

spin-triplet states
8
practical applications
8
generating spin-triplet
4
states bulk
4
bulk perovskite/organic
4
perovskite/organic interface
4
interface photon
4
photon upconversion
4
upconversion perovskite-sensitized
4
perovskite-sensitized triplet-triplet
4

Similar Publications

Coherent manipulation of photochemical spin-triplet formation in quantum dot-molecule hybrids.

Nat Mater

January 2025

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.

View Article and Find Full Text PDF

Tunable Mirror-Symmetric Type-III Ising Superconductivity in Atomically-Thin Natural Van der Waals Heterostructures.

Adv Mater

December 2024

School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.

Article Synopsis
  • Van der Waals (vdW) crystals with strong spin-orbit coupling are key for discovering unique 2D superconductors, where new pairing states arise from the combination of various factors like SOC and crystal structure.
  • The study highlights a mirror-symmetry protected Ising pairing state in a heterostructure of SnSe and TaSe, where the arrangement of the lattice helps minimize interference from certain pairing mechanisms.
  • The findings indicate that these vdW heterostructures can enhance the critical temperature under specific magnetic fields, which does not occur in other multilayer configurations due to a loss of mirror symmetry.
View Article and Find Full Text PDF

Probing -wave superconductivity in UTe via point-contact junctions.

NPJ Quantum Mater

November 2024

Department of Physics, Maryland Quantum Materials Center, University of Maryland, College Park, MD USA.

Article Synopsis
  • Uranium ditelluride (UTe) is considered a top candidate for a -wave superconductor in bulk form, prompting detailed spectroscopic research.
  • Conductance measurements were taken through point-contact junctions at low temperatures (down to 250 mK) and high magnetic fields (up to 18 T), utilizing the Blonder-Tinkham-Klapwijk model for analysis.
  • The findings indicate a dominant -wave gap function with an amplitude of 0.26 ± 0.06 meV, supporting the idea of spin-triplet pairing in UTe's superconducting state.
View Article and Find Full Text PDF

Absence of bulk charge density wave order in the normal state of UTe.

Nat Commun

November 2024

Los Alamos National Laboratory, Los Alamos, NM, USA.

A spatially modulated superconducting state, known as pair density wave (PDW), is a tantalizing state of matter with unique properties. Recent scanning tunneling microscopy (STM) studies revealed that spin-triplet superconductor UTe hosts an unprecedented spin-triplet, multi-component PDW whose three wavevectors are indistinguishable from a preceding charge-density wave (CDW) order that survives to temperatures well above the superconducting critical temperature, T. Whether the PDW is the mother or a subordinate order remains unsettled.

View Article and Find Full Text PDF

The Stoner instability remains a cornerstone for understanding metallic ferromagnets. This instability captures the interplay of Coulomb repulsion, Pauli exclusion, and twofold fermionic spin degeneracy. In materials with spin-orbit coupling, this fermionic spin is generalized to a twofold degenerate pseudospin which is typically believed to have symmetry properties as spin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!