Lithium-ion batteries (LIBs) are among the most promising power sources for electric vehicles, portable electronics and smart grids. In LIBs, the cathode is a major bottleneck, with a particular reference to its low electrical conductivity and Li-ion diffusivity. The coating with carbon layers is generally employed to enhance the electrical conductivity and to protect the active material from degradation during operation. Here, we demonstrate that this layer has a primary role in the lithium diffusivity into the cathode nanoparticles. Positron is a useful quantum probe at the electroactive materials/carbon interface to sense the mobility of Li-ion. Broadband electrical spectroscopy demonstrates that only a small number of Li-ions are moving, and that their diffusion strongly depends on the type of carbon additive. Positron annihilation and broadband electrical spectroscopies are crucial complementary tools to investigate the electronic effect of the carbon phase on the cathode performance and Li-ion dynamics in electroactive materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803833 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.105794 | DOI Listing |
Small
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFSmall
January 2025
Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China.
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University Nanchang 330063 P. R. China.
Photocatalytic reduction of CO to produce organic fuels is a promising strategy for addressing carbon reduction and energy scarcity. Transition metal carbides (TiCT ) are of particular interest due to their unique layered structures and excellent electrical conductivity. However, the practical application of TiCT is limited by the poor separation efficiency of photogenerated charge carriers and the low migration ability of photogenerated electrons.
View Article and Find Full Text PDFSci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China. Electronic address:
Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!